高长径比管式反应器内壁SiO_2与TiO_2钝化层的原子层沉积制备及抗积碳性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of Silica and Titania Anti-coking Passivation Layers in High Aspect-ratio Tubular Reactors by Atomic Layer Deposition
  • 作者:惠龙飞 ; 李建国 ; 龚婷 ; 孙道安 ; 吕剑 ; 胡申林 ; 冯昊
  • 英文作者:HUI Longfei;LI Jianguo;GONG Ting;SUN Daoan;L Jian;HU Shenlin;FENG Hao;Science and Technology on Combustion and Explosion Laboratory,Xi'an Modern Chemistry Research Institute;Laboratory of Material Surface Engineering and Nanofabrication,Xi'an Modern Chemistry Research Institute;State Key Laboratory of Fluorine and Nitrogen Chemicals,Xi'an Modern Chemistry Research Institute;Beijing Power Machinery Institute;
  • 关键词:原子层沉积(ALD) ; 表面钝化 ; 积碳 ; 二氧化钛(TiO2) ; 二氧化硅(SiO2)
  • 英文关键词:Atomic layer deposition(ALD);;Surface passivation;;Coke suppression;;Titania;;Silica
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:西安近代化学研究所火炸药燃烧国防科技重点实验室;西安近代化学研究所材料表面工程与纳米修饰实验室;西安近代化学研究所氟氮化工资源高效开发与利用国家重点实验室;北京动力机械研究所;
  • 出版日期:2019-02-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家“万人计划”青年拔尖人才支持计划(批准号:W02070370)资助~~
  • 语种:中文;
  • 页:GDXH201902001
  • 页数:9
  • CN:02
  • ISSN:22-1131/O6
  • 分类号:9-17
摘要
采用原子层沉积技术(ALD)在不锈钢微通道管式反应器内壁沉积二氧化硅(SiO_2)和二氧化钛(TiO_2)薄膜,以抑制碳氢燃料热裂解过程中由于金属催化作用导致的结焦.使用石英晶体微天平(QCM)测得SiO_2和TiO_2薄膜的生长速率分别为0. 15 nm/周期和0. 11 nm/周期,因此可以通过改变沉积周期数精确控制钝化层的厚度.在结焦实验中,当钝化膜层较薄时,其抗积碳钝化作用较弱;随着钝化薄膜厚度的增加,其钝化作用逐渐增强,微通道反应器的运行寿命显著延长.实验表明,TiO_2薄膜的抗积碳钝化性能普遍优于SiO_2薄膜.沉积周期数为1000的TiO_2膜层具有最佳的抗积碳钝化效果,能够使反应器的运行时间延长4~5倍.
        Silica and titania thin films were deposited inside the micro channels of stainless steel tubular reactors by atomic layer deposition( ALD) to suppress the metal catalyzed coke formation during thermal cracking of hydrocarbon fuels. Quartz crystal microbalance measurements reveal that the average film growth rate is 0. 15 nm/cycle for silica and 0. 11 nm/cycle for titania. The thicknesses of the passivation layers can be precisely controlled by changing the number of ALD cycle. In coking experiments,very thin films of silica or titania only show modest anti-coking performances and thicker coatings can effectively enhance the run lengths of the micro channel reactors. Generally,ALD titainia coatings perform better than silica coatings. The best anti-coking performance is obtained with a 1000-cycles ALD titania passivation layer,which can extend the lifetime of the reaction system by a factor of 4 to 5.
引文
[1] Albright L. F.,Marek J. C.,Ind. Eng. Chem. Res.,1988,27,755—759
    [2] Froment G. F.,Chem. Eng. Sci.,1981,36(8),1271—1282
    [3] Shen L. M.,Gong J. M.,Liu H. S.,Huang Y. X.,J. Shanghai Jiaotong Univ.,2014,48(8),1159—1163(沈利民,巩建鸣,刘焕胜,黄玉霞.上海交通大学学报,2014,48(8),1159—1163)
    [4] Kumar P.,Kunzru D.,Can. J. Chem. Eng.,1987,65(2),280—285
    [5] Huang Y. F.,Zhu Y. L.,Xiong C. J.,Pan Y. J.,J. Beijing Univ. Aeron. Astron.,2011,37(6),753—756(黄艳斐,朱岳麟,熊常健,潘英杰.北京航空航天大学学报,2011,37(6),753—756)
    [6] Wauters S.,Marin G. B.,Ind. Eng. Chem. Res.,2002,41(10),2379—2391
    [7] Mohamadalizadeh A.,Towfighi J.,Karimzadeh R.,J. Anal. Appl. Pyrol.,2008,82(1),134—139
    [8] Abghari S. Z.,J. Petrol. Sci. Eng.,2013,2(2),82—91
    [9] Jiang R. P.,Liu G. Z.,He X. Y.,Yang C. H.,Wang L.,Zhang X. W.,Mi Z. T.,J. Anal. Appl. Pyrol.,2011,92(2),292—306
    [10] Edwards T.,Combust. Sci. Technol.,2006,178(1-3),307—334
    [11] Guo Y. S.,Fang W. J.,Lin R. S.,J. Zhejiang Univ-Sci. A,2005,39(4),538—541(郭永胜,方文军,林瑞森.浙江大学学报(工学版),2005,39(4),538—541)
    [12] Liu G.,Han Y.,Wang L.,Zhang X.,Mi Z.,Energ. Fuel,2009,23(1),356—365
    [13] Hu W. X.,Shen J.,Zhou R. J.,Dang Y. X.,J. Petrochemical Universities,2017,30(1),1—7(胡文学,沈健,周如金,党迎喜.石油化工高等学校学报,2017,30(1),1—7)
    [14] Wickham D. T.,Engel J. R.,Karpuk M. R.,Preprint Paper Am. Chem. Soc. Div. Petrol. Chem.,2000,45(3),459—464
    [15] Mohan A. R.,Eser S.,Ind. Eng. Chem. Res.,2011,50(12),7290—7304
    [16] Zhou J.,Xu H.,Liu J.,Qi X.,Zhang L.,Jiang Z.,Mater. Lett.,2007,61(29),5087—5090
    [17] Yang C.,Liu G.,Wang X.,Jiang R.,Wang L.,Zhang X.,Ind. Eng. Chem. Res.,2012,51(3),1256—1263
    [18] Tang S.,Hu S.,Zhang Y.,Wang J.,Zhu Q.,Chen Y.,Li X.,J. Anal. Appl. Pyrol.,2014,107(5),197—203
    [19] Tang S.,Gao S.,Wang S.,Wang J.,Zhu Q.,Surf. Coat. Tech.,2014,258(7),1060—1067
    [20] Chien Y. Y.,Chien F. L.,Exp. Therm. Fluid. Sci.,2013,47,40—47
    [21] Jia S. Y.,Yang W. G.,Zhang B.,Modern Paint&Finishing,2011,14(1),25—27(贾思洋,杨万国,张波.现代涂料与涂装,2011,14(1),25—27)
    [22] George S. M.,Chem. Rev.,2010,110(1),111—131
    [23] Clark M. D.,Maschmann M. R.,Patel R. J.,Leever B. J.,Sol. Energ. Mat. Sol. C,2014,128(5),178—183
    [24] Díaz B.,Hrk9nen E.,S'wiatowska J.,Maurice V.,Seyeux A.,Marcus P.,Ritala M.,Corros. Sci.,2011,53(6),2168—2175
    [25] Han D. S.,Choi D. K.,Park J. W.,Thin Solid Films,2014,552,155—158
    [26] Hirvikorpi T.,Vh-Nissi M.,Mustonen T.,Liskola E.,Karppinen M.,Thin Solid Films,2010,518(10),2654—2658
    [27] Marin E.,Lanzutti A.,Lekka M.,Guzman L.,Ensinger W.,Fedrizzi L.,Surf. Coat. Tech.,2014,211(3),84—88
    [28] Roy A. K.,Schulze S.,Hietschold M.,Goedel W. A.,Carbon,2012,50(3),761—770
    [29] Gong T.,Hui L. F.,Zhang J. W.,Sun D. A.,Qin L. J.,Du Y. M.,Li C. Y.,Lu J.,Hu S. L.,Feng H.,Ind. Eng. Chem. Res.,2015,54(15),3746—3753
    [30] Gao S.,Hu S. W.,Zhu Q.,Zhang Q. Y.,Wang J. L.,Li X. Y.,J. Fuel Chem. Techno.,2014,42(8),1010—1017(高爽,胡生望,朱权,张其翼,王健礼,李象远.燃料化学学报,2014,42(8),1010—1017)
    [31] Luan X. J.,Xu H.,Wang Z. Y.,Zhou J. X.,Zhu W.,Chinese Petrol. Processing Petrochem. Technol.,2011,42(5),75—80(栾小建,徐宏,王志远,周建新,朱巍.石油炼制与化工,2011,42(5),75—80)
    [32] Tang S.,Wang J.,Zhu Q.,Chen Y.,Li X.,ACS Appl. Mater. Inter.,2014,6(19),17157—17165
    [33] Du Y.,Du X.,George S. M.,J. Phys. Chem. C,2007,111(1),219—226
    [34] Thielsch R.,Gatto A.,Kaiser N.,Appl. Optics,2002,41(16),3211—3217
    [35] Du Y.,Du X.,George S. M.,Thin Solid Films,2005,491(1),43—53
    [36] Foong T. R. B.,Shen Y.,Hu X.,Sellinger A.,Adv. Funct. Mater.,2010,20(9),1390—1396
    [37] Sun D. A.,Du Y. M.,Zhang J. W.,Jiao Y.,Li Y.,Wang Z. X.,Li C. Y.,Feng H.,Lu J.,Fuel,2017,194,266—273