脱脂椰蓉可溶性膳食纤维制备工艺及单糖组成和理化特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation, Monosaccharide Composition and Physicochemical Properties of Soluble Dietary Fiber from Defatted Coconut Meal
  • 作者:杜晓静 ; 白新鹏 ; 姜泽放 ; 高巍 ; 张芳芳
  • 英文作者:DU Xiaojing;BAI Xinpeng;JIANG Zefang;GAO Wei;ZHANG Fangfang;Key Laboratory of Biologically Active Substances and Functional Food Development,College of Food Science and Technology, Hainan University;
  • 关键词:脱脂椰蓉 ; 可溶性膳食纤维 ; 响应面分析法 ; 单糖组成
  • 英文关键词:defatted coconut?flour;;soluble?dietary?fiber;;response?surface?methodology;;monosaccharide?composition
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:海南大学食品学院生物活性物质与功能食品开发重点实验室;
  • 出版日期:2018-05-18 15:11
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.591
  • 基金:海南省自然科学基金项目(20153159;314075)
  • 语种:中文;
  • 页:SPKX201902036
  • 页数:7
  • CN:02
  • ISSN:11-2206/TS
  • 分类号:253-259
摘要
以脱脂椰蓉为原料,采用响应面分析法建立酶-化学法提取可溶性膳食纤维得率的二次多项数学模型,并验证数学模型的有效性。探讨酶添加量、酶解时间、碱添加量、碱解时间因素对可溶性膳食纤维得率的影响,优化提取工艺参数,确定最佳提取工艺参数为混合酶添加量0.5%、酶解时间50 min、碱液(NaOH溶液)质量分数5%、碱解时间40 min,在此条件下椰蓉粕可溶性膳食纤维得率达11.78%,持水性、持油性和膨胀性分别为3.8 g/g、5.2 g/g和3.1 mL/g。红外光谱分析发现,脱脂椰蓉可溶性膳食纤维处于缔合状态的氢键较多;高效液相色谱结果表明,可溶性膳食纤维含有9种单糖,其中甘露糖、氨基半乳糖、半乳糖、阿拉伯糖含量较高,分别为537.21、40.38、39.48 mg/L和15.83 mg/L。
        Response surface methodology was employed to optimize the process parameters for enzyme-assisted alkaline extraction?of?soluble?dietary?fiber (SDF)?from?defatted?coconut?flour.?A?quadratic?polynomial?model?was?built?and?validated.?The yield of SDF was investigated with respect to four variables, enzyme concentration, enzymatic hydrolysis time, alkali concentration and alkaline hydrolysis time. The optimized conditions were as follows: enzyme concentration (α-amylase + glucoamylase, 1:1) 0.5%, enzymatic hydrolysis time 50 min, NaOH concentration 5%, and alkaline hydrolysis time 40 min. Under these conditions, the yield of SDF was 11.78%, and the water-holding capacity, swelling-capacity and oil-holding capacity of the SDF obtained were 3.8 g/g, 3.1 mL/g and 5.2 g/g, respectively. Infrared spectral analysis indicated that there were a large number of hydrogen bonds in the associated state in the SDF. HPLC results indicated that the SDF was composed of 9 monosaccharides, with mannose, galactose, galactosamine and gum sugar being predominant (537.21, 39.48, 40.38 and 15.83 mg/L, respectively).
引文
[1]宋彦博,张玉锋,赵松林,等.椰蓉膳食纤维的提取工艺优化[J].食品工业,2016,37(11):132-135.
    [2]郑亚军,李艳,唐敏敏,等.椰子可溶性膳食纤维提取工艺的研究[J].热带作物学报,2011,32(3):540-543.DOI:10.3969/j.issn.1000-2561.2011.03.035.
    [3]李加兴,刘飞,范芳利,等.响应面法优化猕猴桃皮渣可溶性膳食纤维提取工艺[J].食品科学,2009,30(14):143-148.
    [4]薛菲,陈燕.膳食纤维与人类健康的研究进展[J].中国食品添加剂,2014(2):208-213.
    [5]王庆庆.三种食用菌可溶性膳食纤维提取工艺优化及功能特性研究[D].长春:吉林农业大学,2016.
    [6]Food and Nutrition Board,Institute of Medicine.Dietary reference intakes:proposed definition of dietary fiber,a report of the panel on the definition of dietary fiber and the standing committee on the scientific evaluation of dietary reference intakes[M].Washington D C:National Academy Press,2001:10.
    [7]?MACKIE?A,?BAJKA?B,?RIGBY?N.?Roles?for?dietary?fibre?in?the?upper GI tract:the importance of viscosity[J].Food Research International,2016,88:234-238.DOI:10.1016/j.foodres.2015.11.011.
    [8]DJURLE S,ANDERSSON A A M,ANDERSSON R.Milling and extrusion of six barley varieties,effects on dietary fibre and starch content and composition[J].Journal of Cereal Science,2016,72:146-152.DOI:10.1016/j.jcs.2016.09.017.
    [9]张晓龙,田亚红,常丽新,等.响应面优化超声-碱解法提取玉米芯中可溶性膳食纤维的工艺[J].食品工业科技,2014,35(12):262-267.DOI:10.13386/j.issn1002-0306.2014.12.049.
    [10]邓璀,李志建,李海峰,等.酶-化学法提取石磨小麦麸皮不溶性膳食纤维工艺研究[J].河南工业大学学报(自然科学版),2015,36(2):13-16;?22.?DOI:10.16433/j.cnki.issn1673-2383.2015.02.025.
    [11]石秀梅,雷激,梁爱华,等.3种来源膳食纤维抗氧化特性比较[J].食品科技,2013,38(1):71-75.DOI:10.13684/j.cnki.spkj.2013.01.042.
    [12]HAN S F,JIAO J,ZHANG W,et al.Lipolysis and themogenesis in adipose tissues as new potential mechanisms for metabolic benefits of dietary fiber[J].Nutrition,2017,33:118-124.DOI:10.1016/j.nut.2016.05.006.
    [13]韩东平,刘玉环,李瑞贞,等.提高豆渣膳食纤维活性改性研究[J].食品科学,2008,29(8):670-672.
    [14]QUAN G J,GENG D W.Comparative study on the different extraction processes?of?dietary?fiber?from?sweet?potato[J].?Chinese?Food?Science,2012,1(3):5-8.
    [15]杜彬,李凤英,范长军,等.响应面法优化葡萄皮渣中可溶性膳食纤维的酸法提取工艺[J].食品科学,2011,32(22):128-134.
    [16]Al-SHERAJI S H,ISMAIL A,MANAP M Y,et al.Functional properties and characterization of dietary fiber from Mangifera pajang Kort.fruit pulp[J].Journal of Agricultural Food Chemistry,2011,59:3980-3985.DOI:10.1021/jf103956g.
    [17]AOAC.Soluble dietary fiber in food and food products enzymaticgravimetric method (phosphate buffer):AOAC Method 991.19[S].Official Method of Analysis,2008:1-2.
    [18]邵佩兰,李雯霞,徐明.不同提取方法对麦麸膳食纤维特性的影响[J].食品科技,2003(11):98-100.DOI:10.13684/j.cnki.spkj.2003.11.034.
    [19]李娜,宁正祥,祝子坪,等.豆渣膳食纤维的制备及性能研究[J].食品科学,2009,30(20):251-254.
    [20]王顺民,汤斌,余建斌,等.响应面法优化菜籽皮可溶性膳食纤维提取工艺[J].中国粮油学报,2011,26(9):98-103.
    [21]乐胜锋,徐春明,曹学丽.纤维素酶法提取苹果渣可溶性膳食纤维[J].食品研究与开发,2010,31(4):82-85.
    [22]曹新志,刘芳,熊俐,等.双酶法提取麸皮膳食纤维的研究[J].中国食品学报,2010,10(2):138-141.DOI:10.16429/j.1009-7848.2010.02.023.
    [23]胡叶碧,王璋.纤维素酶和木聚糖酶对玉米皮膳食纤维组成和功能特性的影响[J].食品工业科技,2006(11):103-105.DOI:10.13386/j.issn1002-0306.2006.11.026.
    [24]王磊,袁芳,高彦祥.响应面法优化酶法提取椪柑渣中可溶性膳食纤维工艺[J].中国食品学报,2014,14(10):171-178.DOI:10.16429/j.1009-7848.2014.10.030.
    [25]廖李,姚晶晶,程薇,等.桑葚果渣可溶性膳食纤维提取工艺优化[J].湖北农业科学,2014,53(24):6086-6089.DOI:10.14088/j.cnki.issn0439-8114.2014.24.048.
    [26]赵成萍,张晓娟,王晓闻,等.红姑娘宿萼中可溶性膳食纤维的提取工艺[J].贵州农业科学,2012,40(4):179-181.
    [27]郑建仙,耿立萍,高孔荣.利用蔗渣制备高活性膳食纤维添加剂的研究[J].食品与发酵工业,1996(3):58-61;?28.?DOI:10.13995/j.cnki.11-1802/ts.1996.03.011.
    [28]朱妞,吴丽萍.花生壳膳食纤维理化特性研究[J].粮食与油脂,2014,27(2):38-41.
    [29]陶姝颖,郭晓晖,令博,等.改性葡萄皮渣膳食纤维的理化特性和结构[J].食品科学,2012,33(15):171-177.
    [30]刘红开,李放,张亚宏,等.不同品种蚕豆种皮中膳食纤维的提取工艺优化及其理化特性[J].食品科学,2016,37(16):22-28.DOI:10.7506/spkx1002-6630-201616004.
    [31]徐洪宇,刘欢,张亚旗,等.响应面法优化金针菇中水溶性膳食纤维的提取工艺[J].中国酿造,2017,36(6):137-141.DOI:10.11882/j.issn.0254-5071.2017.06.028.