SS400和65Mn钢高温热力学性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of high temperature thermodynamic properties of SS400 and 65Mn steel
  • 作者:孙立根 ; 刘阳 ; 朱立光 ; 任英强 ; 刘增勋
  • 英文作者:SUN Ligen;LIU Yang;ZHU Liguang;REN Yingqiang;LIU Zengxun;School of Metallurgy and Energy,Hebei United University;Hebei Engineering Technology of High Quality Steel Continuous Casting Research Center;
  • 关键词:连铸 ; 高温热力学性能 ; SS400钢 ; 65Mn钢
  • 英文关键词:continuous casting;;high temperature thermodynamic properties;;SS400 steel;;65Mn steel
  • 中文刊名:LGZZ
  • 英文刊名:Steelmaking
  • 机构:河北联合大学冶金与能源学院;河北省高品质钢连铸工程技术研究中心;
  • 出版日期:2015-06-05
  • 出版单位:炼钢
  • 年:2015
  • 期:v.31;No.175
  • 基金:河北省自然科学基金资助项目(E2012401068)
  • 语种:中文;
  • 页:LGZZ201503015
  • 页数:6
  • CN:03
  • ISSN:42-1265/TF
  • 分类号:68-73
摘要
以凝固过程的溶质微观偏析理论为基础,通过实际测试和理论分析计算相结合,系统的研究了连铸条件下SS400和65Mn两钢种的高温热力学特性。研究表明:钢种两相区宽度对其相应的等效导热系数、等效比热2个热学参数和泊松比起决定作用;通过铸态组织的高温拉伸试验测试结果可拟合得到相应钢种杨氏模量与温度的关系曲线;对于连铸而言,凝固过程中的粘滞性温度和固态组织类型决定了热膨胀系数的大小,65Mn钢凝固过程中直接生成γ奥氏体,因此热膨胀系数的峰值较SS400钢要大,达到0.000 36/℃。
        In this research,based on the microscopic theory of solute segregation,and with the combination of the experimental test and calculation analyses,the high temperature thermodynamic properties of SS400 steel and 65 Mn steel for casting condition had been researched.It is shown that,the equivalent thermal conductivity,the equivalent specific heat and the Poisson's ratio are decided by the width of the corresponding solidification two-phase zone;the Young's modulus of the casting steel can be fitted by the high temperature tensile test results;the coefficient of thermal expansion is decided by the liquid impenetrable temperature and the metal tissue types,for 65 Mn steel,when solidifying,it forms γ-austenite directly,so its maximum coefficient of thermal expansion is bigger than SS400 steel,and reached 0.000 36/℃.
引文
[1]蔡开科,党紫九.连铸钢高温力学性能专辑[J].北京科技大学学报,1993(S2):15.
    [2]荆德君.连铸结晶器内钢水凝固过程热和应力状态数值模拟研究[D].北京:北京科技大学,2001.
    [3]Voller V R,Swaminathan C R,Thomas B G.Fixed grid techniques for phase change problems:A review[C]//International Journal for Numerical Methods in Engineering,1990,30:875-898.
    [4]罗森,朱苗勇,祭程,等.钢连铸过程的溶质微观偏析模型[J].钢铁,2010,45(6):31-36.
    [5]Ueshima Y,Mizoguchi S,Matsumiya T,et al.Analysis of solute distribution in dendrites of carbon steel withδ/γtransformation during solidification[J].Metallurgical Transactions B,1986,17(11):845-859.
    [6]王恩钢.结晶器内铸坯热/力学行为的有限元数值模拟研究[D].沈阳:东北大学,1998.
    [7]干勇.现代连续铸钢实用手册[M].北京:冶金工业出版社,2010.
    [8]Uehara M,Samarasekera I V,Brimacombe J K.Mathematical modeling of unbending of continuously cast steel slabs[J].Ironmaking and Steelmaking,1986,13(3):138-153.
    [9]崔立新.板坯连铸动态轻压下工艺的三维热力学模型研究[D].北京:北京科技大学,2005.
    [10]孙立根.连铸结晶器漏钢行为及其预报模型研究[D].北京:北京科技大学,2010.
    [11]Jablonka A,Harste K,Schwerdtfeger K.Thermomechanical properties of iron and iron-carbon alloys:Density and thermal contraction[J].Steel Research,1991,62(1):24-33.