基于勘查数据的胶东大尹格庄金矿床控矿地质因素定量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative analysis of ore-controlling factors based on exploration data of the Dayingezhuang gold deposit in the Jiaodong Peninsula
  • 作者:毛先成 ; 王迷军 ; 刘占坤 ; 陈进 ; 邓浩
  • 英文作者:MAO Xiancheng;WANG Mijun;LIU Zhankun;CHEN Jin;DENG Hao;School of Geosciences and Info-Physics,Central South University;Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Ministry of Education),Central South University;
  • 关键词:控矿因素 ; 勘探大数据 ; 定量分析 ; 胶东金矿 ; 大尹格庄金矿床 ; 胶东半岛
  • 英文关键词:ore-controlling factor;;exploration big data;;quantitative analysis;;Jiaodong gold deposit;;Dayingezhuang gold deposit;;Jiaodong Peninsula
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中南大学地球科学与信息物理学院;中南大学有色金属成矿预测与地质环境监测教育部重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.138
  • 基金:国家自然科学基金项目(41472301,41772349);; 山东省重点研发计划项目(2017CXGC1605);; 国家重点研发计划项目(2017YFC0601503)
  • 语种:中文;
  • 页:DXQY201904012
  • 页数:10
  • CN:04
  • ISSN:11-3370/P
  • 分类号:88-97
摘要
胶东金矿床集中产于伸展构造系统内,常常显示出明显的构造控矿特征,但前人提出的阶梯式成矿模式难以回答哪些构造特征真正控制了金矿床的形成。大数据时代的到来为地质勘查数据的挖掘、成矿规律的探索提供了新的途径。选择胶东地区的大尹格庄金矿床为研究对象,在系统收集勘查资料的基础上,通过空间分析技术对控矿因素的不同特征进行定量表达,进而分析其与金矿化的相关关系。分析结果显示招平断裂带的距离场因素与金品位和金属量均呈双峰分布特征,与大尹格庄金矿床存在的两类矿化相对应,直观反映了不同类型矿石的相对空间位置。断层的坡度与金品位近似呈高斯分布,品位峰值区累积了大量的金属量,暗示了成矿流体更多地在某一特定的坡度范围内汇聚、停留。断裂面的陡缓变化和起伏程度显著地影响了金的富集程度,能够清晰地区分出经济品位的矿石和矿化体并确定矿体的最有利部位。在蚀变带中最强烈的蚀变部位,金的沉淀量急剧增加,暗示蚀变带内相同的部位可能叠加了持续的热液交代或多次成矿作用。控矿因素大数据分析表明,招平断裂面的形态特征是控制大尹格庄形成的关键因素,这种规律可被推广到整个胶东地区的金矿床。
        The Jiaodong gold deposit typically occurs in an extensional fault system and often exhibits obvious structural ore-control characteristics.However,the step metallogenic model of the Jiaodong gold deposit is inadequate to delineate the structural features that essentially control the formation of the deposit.The big data technology has provided a new approach to mine exploration data and explore minerogenetic regularities.In this paper,we studied the Dayingezhuang gold deposit in the Jiaodong peninsula.Based on the collected exploration data and using the spatial analysis method,we performed quantitative assessment of different features of ore-controlling factors to determine their association with gold mineralization.The results show a bimodal distribution between either gold grade or quantity and the fault distance factor.The bimodal distribution is consistent with the occurrence of two ore types in the gold deposit and directly indicates the relative spatial positions between the two ore types.Plot of gold grade vs.fault slope showed a near Gaussian distribution peaking at a slope range for large gold accumulation,suggesting that ore-forming fluids prefer to converge and remain at certain sloped sections.We observed that slope change and undulation of fault have significant effects on ore distribution and can clearly distinguish the locations of orebodies in terms of ore quality.We also observed sharp increase of gold accumulation in the intense alteration zone,where continuous hydrothermal process or multiple mineralization most likely had occurred.We conclude that the morphological features of the Zhaoping fault played key roles in the formation of the Dayingezhuang gold deposit.This conclusion may be applied to other Jiaodong gold deposits.
引文
[1]翟明国,范宏瑞,杨进辉,等.非造山带型金矿:胶东型金矿的陆内成矿作用[J].地学前缘,2004,11(1):85-98.
    [2] GOLDFARB R J,SANTOSH M.The dilemma of the Jiaodong gold deposits:are they unique?[J].Geoscience Frontiers,2014,5(2):139-153.
    [3] LI S R,SANTOSH M.Metallogeny and craton destruction:records from the North China Craton[J].Ore Geology Reviews,2014,56(1):376-414.
    [4]杨立强,邓军,王中亮,等.胶东中生代金成矿系统[J].岩石学报,2014,30(9):2447-2467.
    [5] SONG M C,LI S Z,SANTOSH M,et al.Types,characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula,Eastern North China Craton[J].Ore Geology Reviews,2015,65:612-625.
    [6] GROVES D I,SANTOSH M.The giant Jiaodong gold province:the key to a unified model for orogenic gold deposits?[J].Geoscience Frontiers,2016,7(3):409-417.
    [7]吕古贤,霍庆龙,袁月蕾,等.胶东金矿陆内构造岩浆核杂岩隆起-拆离带蚀变成矿[J].地学前缘,2017,24(2):95-103.
    [8]宋明春,伊丕厚,徐军祥,等.胶西北金矿阶梯式成矿模式[J].中国科学:地球科学,2012,42(7):992-1000.
    [9]周永章,黎培兴,王树功,等.矿床大数据及智能矿床模型研究背景与进展[J].矿物岩石地球化学通报,2017,36(2):327-331.
    [10]吴冲龙,刘刚,张夏林,等.地质科学大数据及其利用的若干问题探讨[J].科学通报,2016,61(16):1797-1807.
    [11]王登红,刘新星,刘丽君.地质大数据的特点及其在成矿规律、成矿系列研究中的应用[J].矿床地质,2015,34(6):1143-1154.
    [12]张旗,焦守涛,卢欣祥.论地质研究中的因果关系和相关关系:大数据研究的启示[J].岩石学报,2018,34(2):275-280.
    [13]赵鹏大.大数据时代数字找矿与定量评价[J].地质通报,2015,34(7):1255-1259.
    [14]张旗,周永章.大数据正在引发地球科学领域一场深刻的革命:《地质科学》2017年大数据专题代序[J].地质科学,2017,52(3):637-648.
    [15]张旗,周永章.大数据时代对科学研究方法的反思:《矿物岩石地球化学通报》2017大数据专辑代序[J].矿物岩石地球化学通报,2017,36(6):881-885.
    [16]张旗,王金荣,陈万峰,等.全球数据库数据研究的初步进展[J].甘肃地质,2018,27(1):1-11.
    [17]周永章,陈烁,张旗,等.大数据与数学地球科学研究进展:大数据与数学地球科学专题代序[J].岩石学报,2018,34(2):255-263.
    [18]陈建平,李靖,谢帅,等.中国地质大数据研究现状[J].地质学刊,2017,41(3):353-366.
    [19]严光生,薛群威,肖克炎,等.地质调查大数据研究的主要问题分析[J].地质通报,2015,34(7):1273-1279.
    [20]肖克炎,李楠,王琨,等.大数据思维下的矿产资源评价[J].地质通报,2015,34(7):1266-1272.
    [21]于萍萍,陈建平,柴福山,等.基于地质大数据理念的模型驱动矿产资源定量预测[J].地质通报,2015,34(7):1333-1343.
    [22]陈建平,于萍萍,史蕊,等.区域隐伏矿体三维定量预测评价方法研究[J].地学前缘,2014,21(5):211-220.
    [23] DENG J,WANG C,BAGAS L,et al.Cretaceous-Cenozoic tectonic history of the Jiaojia fault and gold mineralization in the Jiaodong Peninsula,China:constraints from zircon U-Pb,illite K-Ar,and apatite fission track thermochronometry[J].Mineralium Deposita,2015,50(8):987-1006.
    [24] CHARLES N,AUGIER R,GUMIAUX C,et al.Timing,duration and role of magmatism in wide rift systems:insights from the Jiaodong Peninsula(China,East Asia)[J].Gondwana Research,2013,24(1):412-428.
    [25]林文蔚,赵一鸣.胶东招远—平度断裂活动性质及活动时代[J].地质通报,2000,19(1):43-50.
    [26] YANG L Q,DENG J,GOLDFARB R J,et al.40 Ar/39 Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:new implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China[J].Gondwana Research,2014,25(4):1469-1483.
    [27] DENG J,WANG Q,WAN L,et al.Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated-veinlet deposit in Jiaodong gold province,China[J].Journal of Geochemical Exploration,2009,102(2):95-102.
    [28]杨斌,高星,彭省临,等.招平断裂带大尹格庄—后仓段深部矿体定位预测[J].中国有色金属学报,2012,22(3):872-879.
    [29] MAO X,ZHAO Y,DENG H,et al.Quantitative analysis of intrusive body morphology and its relationship with skarn mineralization:a case study of Fenghuangshan copper deposit,Tongling,Anhui,China[J].Transactions of Nonferrous Metals Society of China,2018,28(1):151-162.
    [30] HU X,YUAN F,LI X,et al.3Dcharacteristic analysisbased targeting of concealed Kiruna-type Fe oxide-apatite mineralization within the Yangzhuang deposit of the Zhonggu orefield,southern Ningwu volcanic basin,Middle-Lower Yangtze River Metallogenic Belt,China[J].Ore Geology Reviews,2018,92:240-256.
    [31] XIAO K,LI N,PORWAL A,et al.Research on GIS-based3Dprospectivity mapping and a case study of Jiama copperpolymetallic deposit in Tibet,China[J].Ore Geology Reviews,2015,71(3):611-632.
    [32]毛先成,唐艳华,赖健清,等.凤凰山矿田成矿地质体三维结构与控矿地质因素分析[J].地质学报,2011,85(9):1507-1518.
    [33]毛先成,邹艳红,陈进,等.危机矿山深部、边部隐伏矿体的三维可视化预测:以安徽铜陵凤凰山矿田为例[J].地质通报,2010,29(2):401-413.
    [34] CARRANZA E J M.Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features[J].Ore Geology Reviews,2009,35(3):383-400.
    [35] MAO X,HU C,ZHOU S,et al.Field analysis of metallogenic information and its application[J].Journal of Central South University,2011,18(1):196-207.
    [36] MAO X,ZHANG B,DENG H,et al.Three-dimensional morphological analysis method for geologic bodies and its parallel implementation[J].Computers&Geosciences,2016,96:11-22.
    [37]毛先成,赵莹,唐艳华,等.基于TIN的地质界面三维形态分析方法与应用[J].中南大学学报(自然科学版),2013,44(4):1493-1499.
    [38]毛先成,唐艳华,邓浩.地质体的三维形态分析方法与应用[J].中南大学学报(自然科学版),2012,43(2):588-595.
    [39] YUAN F,LI X,ZHANG M,et al.Three-dimensional weights of evidence-based prospectivity modeling:a case study of the Baixiangshan mining area,Ningwu Basin,Middle and Lower Yangtze Metallogenic Belt,China[J].Journal of Geochemical Exploration,2014,145:82-97.
    [40] YANG L,ZHAO R,WANG Q,et al.Fault geometry and fluid-rock reaction:combined controls on mineralization in the Xinli gold deposit,Jiaodong Peninsula,China[J].Journal of Structural Geology,2018,111:14-26.
    [41]刘育,杨立强,郭林楠,等.胶东大尹格庄金矿床成矿流体组成[J].岩石学报,2014,30(9):2507-2517.
    [42]沈昆,胡受奚,孙景贵,等.山东招远大尹格庄金矿成矿流体特征[J].岩石学报,2000,16(4):542-550.
    [43] GROVES D I,SANTOSH M,GOLDFARB R J,et al.Structural geometry of orogenic gold deposits:implications for exploration of world-class and giant deposits[J].Geoscience Frontiers,2018,9(4):1163-1177.
    [44] LEBRUN E,MILLER J,THEBAUD N,et al.Structural controls on an orogenic gold system:the world-class Siguiri gold district,Siguiri Basin,Guinea,West Africa[J].Economic Geology,2017,112(1):73-98.
    [45]郑有业,孙祥,田立明,等.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代[J].大地构造与成矿学,2014,38(1):108-118.
    [46] KOEGELENBERG C,KISTERS A F M,HARRIS C.Structural controls of fluid flow and gold mineralization in the easternmost parts of the Karagwe-Ankole Belt of northwestern Tanzania[J].Ore Geology Reviews,2016,77:332-349.