基于海事卫星时延和频偏的远海飞行器跟踪方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Method for Maritime Target Tracking Based on Time-frequency Data Fusion of Maritime Satellites
  • 作者:程遥 ; 吕植勇
  • 英文作者:CHENG Yao;LYU Zhiyong;Intelligent Transportation Systems Research Center,Wuhan University of Technology;
  • 关键词:海事安全 ; 飞行器跟踪 ; 海事卫星 ; 时延 ; 频偏 ; 粒子滤波
  • 英文关键词:maritime safety;;aircraft tracking;;Inmarsat;;time delay;;frequency offset;;particle filtering
  • 中文刊名:JTJS
  • 英文刊名:Journal of Transport Information and Safety
  • 机构:武汉理工大学智能交通中心;
  • 出版日期:2019-06-28
  • 出版单位:交通信息与安全
  • 年:2019
  • 期:v.37;No.218
  • 基金:国家科技支撑计划项目(2014BAB12B01)资助
  • 语种:中文;
  • 页:JTJS201903009
  • 页数:9
  • CN:03
  • ISSN:42-1781/U
  • 分类号:76-84
摘要
针对海上飞行器难以实现实时安全定位的问题,研究利用海事卫星时频数据对海上飞行器进行跟踪的方法,实现主动地跟踪远海飞行器的轨迹。介绍并分析现有自适应转弯模型的缺点以及交互式多模型算法(IMM)在测量数据为时延和频偏情况下存在的问题。在此基础上提出基于时延约束的自适应转弯模型,该模型通过引入时延数据建立转弯速率估计器,估计目标可能的位置和对应的转弯速率,进而估计出目标的速度矢量。简要地介绍了频偏的计算模型以及粒子滤波算法,给出了远海飞行器跟踪的算法流程图。使用Matlab进行了二维对比分析,并使用专业的仿真软件卫星工具包(STK)搭建远海飞行仿真环境,生成仿真的飞行参数、卫星时延以及频偏等数据用以验证模型的可行性。仿真结果表明:①在测量数据为时延和频偏的情况下,传统交互式多模型算法难以适用,容易出现滤波发散;而自适应转弯模型能够很好地估计目标的轨迹,且不需要人为设置转弯速率。②使用该模型可以较为完整地得到远海飞行器的轨迹,且平均经纬度误差在0.2°以下,最大经纬度误差约等于0.8°。
        It is difficult to track offshore aircrafts which are flying in maritime areas.A method for tracking the aircrafts using Inmarsat time-frequency data is studied.Shortcomings of existing adaptive turning models are introduced and analyzed.Problems of the interacting multiple model(IMM)in cases that measuring data has delay or frequency offset.An adaptive turning model based on time delay constraint is proposed.The model uses time-delay to estimate turning rate.Possible positions of targets and their turning rate are calculated,then the turning rate is applied to estimates speed vector of the targets.Methods of calculating frequency offset and principle of particle filter are briefly introduced,and a flow chart of the methods is developed to track offshore aircrafts.Matlab and Satellite Tool Kit(STK)are used to simulate environments for offshore aircrafts.Data of satellite delay and frequency offset is generated to verify the model.The results show that:①under environments of time delay and frequency offset,traditional interactive multi-model algorithms are difficult to apply when filter divergence is easy to occur.However the adaptive turning model can estimate trajectories of the targets,and has no need to set turning rate.②Complete trajectories of offshore aircrafts can be relatively obtained,for average latitude or longitude error both below 0.2°,and the maximum latitude or longitude error is about 0.8°.
引文
[1]DAVEY S,GORDON N,HOLLAND I,et al.How statistical signal processing was used to define the MH370 search zone[J].IEEE Potentials,2017,36(6):32-37.
    [2]朱布雷.搜救定位系统与关键技术研究[D].西安:西安电子科技大学,2011.ZHU Bulei.Research on the positioning system of search and its key techniques[D].Xi′an:Xidian U-niversity,2011.(in Chinese)
    [3]马广辉,张军峰,王菲,等.基于历史雷达轨迹分析的4D航迹规划[J].交通信息与安全,2015,33(4):106-112.MA Guanghui,ZHANG Junfeng,WANG Fei,et al.A 4Dtrajectory planning method based on historical radar tracks of air traffic[J].Journal of Transport Information and Safety,2015,33(4):106-112.(in Chinese)
    [4]刘鑫,杨霄鹏,田士佳,等.航空飞机雷达跟踪目标精度测量仿真[J].计算机仿真,2017,34(12):26-30.LIU Xin,YANG Xiaopeng,TIAN Shijiaet,etal.A-viation aircraft radar tracking target precision measurement simulation[J].Computer Simulation,2017,34(12):26-30.(in Chinese)
    [5]SUBHASH C,周共健.目标跟踪基本原理[M].北京:国防工业出版社,2015.SUBHASH C,ZHOU Gongjian.Basic principle of target tracking[M].Beijing:National Defense Industry Press,2015.(in Chinese)
    [6]李涛,熊友根,吴量.基于改进“自适应转弯”模型的机动目标跟踪算法[J].计算机与数字工程,2013(7):1089-1091.LI Tao,XIONG Yougen,WU Liang.Maneuvering target tracking algorithm based on improved“self-adaptive turning rate”model[J].Computer&Digital Enginering,2013(7):1089-1091.(in Chinese)
    [7]陈晓,李亚安,李余兴.基于距离加权的概率数据关联机动目标跟踪算法[J].上海交通大学学报,2018,52(4):474-479.CHEN Xiao,LI Yaan,LI Yuxing.Maneuvering target tracking algorithm based on weighted distance of probability data association[J].Journal of Shanghai Jiaotong University,2018,52(4):474-479.(in Chinese)
    [8]WANG D,ZHANG Q,MORRIS J.Distributed markov chain monte carlo kernel based particle filtering for object tracking[J].Multimedia Tools and Applications,2012,56(2):303-314.
    [9]鲁光泉,潘日佩.考虑定位信息不确定性的多车协同定位算法[J].交通信息与安全,2018,36(5):65-72,80.LU Guangquan,PAN Ripei.An algorithm of multi-vehicle cooperative positioning considering uncertainty in V2V[J].Journal of Transport Information and Safety,2018,36(5),59-66.(in Chinese)
    [10]连峰,王婷婷,韩崇昭.扩展目标跟踪的PCRLB[J].控制与决策,2016,31(8):1401-1406.LIAN Feng,WANG Tingting,HAN Chongzhao.PCRLB for extended target tracking[J].Control and Decision,2016,31(8):1401-1406.(in Chinese)
    [11]苗伟,李昌玺,吴聪.基于修正转弯模型的交互多模型跟踪算法[J].现代防御技术,2015,43(3):113-118.MIAO Wei,LI Changxi,WU Cong.Interactive multiple model tracking algorithm based on the modified model of turning[J].Modern Defence Technology,2015,43(3):113-118.(in Chinese)
    [12]MUNIR A,MIRZA J A,KHAN A Q.Parameter adjustment in the turn rate models in the interacting multiple model algorithm to track a maneuvering target[C].IEEE International Multi Topic Conference,Lahore,Pakistan:IEEE,2001.
    [13]贺秀玲,李涛,姜运芳.基于改进自适应转弯模型的机动目标跟踪算法[J].计算机工程与应用,2012,48(23):135-138.HE Xiuling,LI Tao,JIANG Yunfang.Maneuvering target tracking algorithm based on improved“self-adaptive turning rate”model[J].Computer Engineering and Applications,2012,48(23):135-138.(in Chinese)
    [14]陈锐,邵珍珍,陈侃.第五代海事卫星通信系统全球网络架构与技术特性研究[J].信息通信,2015(8):8-10.CHEN Rui,SHAO Zhenzhen,CHEN Kan.The research of architecture and network topology in Inmarsat-5system[J].Information&Communications,2015(8):8-10.(in Chinese)
    [15]张辉,陈豫眉,周琴.基于牛顿迭代构造新的五阶预估校正格式[J].数学的实践与认识,2018,48(11):140-143.ZHANG Hui,CHEN Yumei,ZHOU Qin.Construction of the new fifth-order predictor-corrector method based on variant of newton iterative method[J].Mathematics in Practice and Theory,2018,48(11):140-143.(in Chinese)
    [16]邵珍珍,万千.基于时延和多普勒频移的海事卫星机载终端定位技术:如何利用海事卫星定位搜索失联飞机[J].遥测遥控,2015(2):71-74.SHAO Zhenzhen,WAN Qian.Positioning technology for Inmarsat aeronautical terminal based on time delay and doppler effect:How to position the missing aircraft via Inmarsat system[J].Journal of Telemetry Tracking and Command,2015(2):71-74.(in Chinese)
    [17]刘剑锋,王虹淞,李云.卫星移动通信多普勒频移补偿研究[J].重庆邮电大学学报(自然科学版),2014,26(3):352-372.LIU Jianfeng,WANG Hongsong,LI Yun.Compensation of doppler frequency satellite mobile communication[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2014,26(3):352-372.(in Chinese)
    [18]王涵.LEO卫星移动通信系统馈电链路载波跟踪中的频率补偿方法[D].哈尔滨:哈尔滨工业大学,2011.WANG Han.Frequency compensation method of feeder link carrier tracking in LEO mobile satellite communication system[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)
    [19]张建飞,丁广,赵乾宏.远洋船海事FB站通信链路时延分析[J].舰船科学技术,2015,37(9):132-136.ZHANG Jianfei,DING Guang,ZHAO Qianhong.Analysis of communication link delay for inmarsat FB terminal on ocean-going ship[J].Ship Science and Technology,2015,37(9):132-136.(in Chinese)
    [20]李承祖.海事卫星通讯地面站频率补偿回路的分析与模拟研究[J].船舶工程,1984(3):3,13-22.LI Chengzu.Analysis and simulation of a frequency compensation loop in marisat earth station[J].Ship Engineering,1984(3):3,13-22.(in Chinese)
    [21]SCHMID P E,LYNN J J.Satellite doppler-data processing using a microcomputer[J].IEEETransactions on Geoscience Electronics,2007,16(4):340-349.