532 nm激光抽运CO_2气体的多光谱拉曼激光
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multispectral Raman Laser in CO_2 Gas Pumped by 532 nm Laser
  • 作者:李仲慧 ; 刘栋 ; 蔡向龙 ; 卞进田 ; 王颜 ; 王鹏远 ; 陈莹 ; 刘金波 ; 胡墅 ; 李慧 ; 郭敬为
  • 英文作者:Li Zhonghui;Liu Dong;Cai Xianglong;Bian Jintian;Wang Yanchao;Wang Pengyuan;Chen Ying;Liu Jinbo;Hu Shu;Li Hui;Guo Jingwei;Key Laboratory of Chemical Lasers,Dalian Institute of Chemical Physics,Chinese Academy of Sciences;State Key Laboratory of Pulsed Power Laser Technology,National University of Defense Technology;
  • 关键词:激光光学 ; 受激拉曼散射 ; 二氧化碳 ; 一级斯托克斯光 ; 高级斯托克斯光 ; 反斯托克斯光
  • 英文关键词:laser optics;;stimulated Raman scattering;;carbon dioxide;;first-order Stokes;;high order Stokes;;anti-Stokes
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:中国科学院大连化学物理研究所化学激光重点实验室;国防科技大学脉冲功率激光技术国家重点实验室;
  • 出版日期:2018-11-23 10:16
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.506
  • 基金:国家自然基金(11475177,61505210);; 中国科学院化学激光重点实验室开放课题基金(KLCL-2017-N10)
  • 语种:中文;
  • 页:JJZZ201902029
  • 页数:6
  • CN:02
  • ISSN:31-1339/TN
  • 分类号:222-227
摘要
基于受激拉曼散射(SRS),研究了一种获得多光谱激光的方法。以Nd\:YAG的二倍频532 nm激光为抽运光,以高压CO_2作为拉曼活性介质,最多可同时输出位于390~755 nm的10种波长。通过优化CO_2压力,得到一级斯托克斯光(S1,574 nm)、二级斯托克斯光(S2,624 nm)和三级斯托克斯光(S3,683 nm)的最大光子转换效率分别为36.6%、19.6%和11.2%。
        Based on stimulated Raman scattering(SRS), we study a method for obtaining multispectral laser. The frequency doubled Nd\:YAG laser at 532 nm is used as the pumping light, and the high pressure CO_2 is used as Raman active medium, and ten different Stokes lasers between 390 nm and 755 nm are generated simultaneously. By optimizing CO_2 pressure, the maximum photon conversion efficiencies for first-order Stokes(S1, 574 nm), second-order Stokes(S2, 624 nm) and third-order Stokes(S3, 683 nm) reach 36.6%, 19.6% and 11.2%, respectively.
引文
[1] Hua X Q, Leng J, Yang H P, et al. Generation of intense backward stimulated Raman scattering in H2-He mixture pumped by single longitudinal mode Nd\:YAG laser[J]. Chinese Journal of Lasers, 2006, 33(4): 451-455. 花晓清, 冷静, 杨何平, 等. 单纵模Nd\:YAG激光抽运H2-He混合气体中的强后向受激拉曼散射[J]. 中国激光, 2006, 33(4): 451-455.
    [2] Lempert W R, Looney J P, Zhang B, et al. Stimulated Raman scattering and coherent anti-Stokes Raman spectroscopy in high-pressure oxygen[J]. Journal of the Optical Society of America B, 1990, 7(5): 715-721.
    [3] Zhang B, Diskin G, Lempert W R, et al. Efficient vibrational Raman conversion in O2 and N2 cells by use of super fluorescence seeding[J]. Optics Letters, 1993, 18(14): 1132-1134.
    [4] Zheng Y, Yao J Q, Zhu S M,et al. Stimulated Raman scattering in oxygen or oxygen-helium mixing gas pumped by a Q-switch frequency doubled Nd\:YAG laser[J]. Acta Optica Sinica, 1995, 15(11): 1594-1597. 郑义, 姚建铨, 朱少明, 等. 调Q倍频Nd\:YAG激光泵浦氧气和氧氦混合气体的受激拉曼散射[J]. 光学学报, 1995, 15(11): 1594-1597.
    [5] Wu F, Shi X C, Wang X L, et al. Stimulated Raman scattering in oxygen pumped by train pulse frequency doubled Nd\:YAG laser[J]. Acta Optica Sinica, 1997, 17(3): 275-278. 吴峰, 施翔春, 王学礼, 等. 序列脉冲倍频YAG激光器泵浦的氧气受激拉曼散射研究[J]. 光学学报, 1997, 17(3): 275-278.
    [6] Chen Y B, Wang Z F, Gu B, el al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 2017, 37(5): 0514002. 陈育斌, 王泽锋, 顾博, 等. 1.5 μm光纤乙烷气体拉曼激光放大器[J]. 光学学报, 2017, 37(5): 0514002.
    [7] Li Z H, Liu D, Cai X L, et al. Stimulated Raman scattering in carbon dioxide gas pumped by Nd\:YAG laser at 1064 nm[J]. Chinese Journal of Lasers, 2018, 45(3): 0308001. 李仲慧, 刘栋, 蔡向龙, 等. 1064 nm Nd\:YAG激光抽运二氧化碳气体中的受激拉曼散射[J]. 中国激光, 2018, 45(3): 0308001.
    [8] Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100-112.
    [9] Chen Y W, R?ikk?nen E, Kaasalainen S, et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source [J]. Sensors, 2010, 10(7): 7057-7066.
    [10] Powers M A, Davis C C. Spectral ladar: towards active 3D multispectral imaging[J]. Proceedings of SPIE, 2010, 7684: 768409.
    [11] Yue G M, Wu Y H, Hu S X, et al. A multi-wavelength simultaneous output laser system for lidar[J]. Chinese Journal of Lasers, 2002, 29(s1): 215-217. 岳古明, 吴永华, 胡顺星, 等. 用于激光雷达的多波长同时输出激光系统[J]. 中国激光, 2002, 29(s1): 215-217.
    [12] Hess A, Schuster R, Heider A, et al. Continuous wave laser welding of copper with combined beams at wavelengths of 1030 nm and of 515 nm [J]. Physics Procedia, 2011, 12: 88-94.
    [13] Ning X F, Yao J Q, Wang P, et al. Experimental studies of a four-wavelengths (1064/1319,532/659 nm) Nd\:YAG laser treatment machine[J]. Journal of Optoelectronics Laser, 2002, 13(12): 1311-1313. 宁喜发, 姚建铨, 王鹏, 等. (1064/1319,532/659 nm) Nd\:YAG激光治疗仪的实验研究[J]. 光电子·激光, 2004, 13(12): 1311-1313.
    [14] Martinez K, Cupitt J, Saunders D, et al. Ten years of art imaging research[J]. Proceedings of the IEEE, 2002, 90(1): 28-41.
    [15] Chane C S, Mansouri A, Marzani F S, et al. Integration of 3D and multispectral data for cultural heritage applications: survey and perspectives[J]. Image and Vision Computing, 2013, 31(1): 91-102.
    [16] Liang H D, Keita K, Vajzovic T. PRISMS: a portable multispectral imaging system for remote in situ examination of wall paintings[J]. Proceedings of SPIE, 2007, 6618: 661815.
    [17] Carcagnì P, Patria A D, Fontana R, et al. Multispectral imaging of paintings by optical scanning[J]. Optics and Lasers in Engineering, 2007, 45(3): 360-367.
    [18] Kaiser W, Maier M. Stimulated Reyleigh, Brillouin and Raman spectroscopy[M]. Amsterdam: North Holland Publishing Company, 1972: 1077-1150.
    [19] Bischel W K, Dyer M J. Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2[J]. Physical Review A, 1986, 33(5): 3113-3123.
    [20] Cheng J X, Volkmer A, Xie X S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy[J]. Journal of the Optical Society of America B, 2002, 19(6): 1363-1375.