SBRC体外模拟法对含砷矿物生物可给性的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioaccessibility of Arsenic Bearing Minerals Using in vitro Extraction Method of SBRC
  • 作者:冯凯 ; 鲍建国 ; 孔淑琼 ; 何蕾
  • 英文作者:FENG Kai;BAO Jianguo;KONG Shuqiong;HE Lei;School of Environment Studies, China University of Geosciences;
  • 关键词:模拟胃肠液 ; 生物可给性 ; 含砷矿物 ; 砷释放
  • 英文关键词:simulated gastrointestinal bio-fluid;;bioaccessibility;;arsenic bearing minerals;;arsenic release
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:中国地质大学(武汉)环境学院;
  • 出版日期:2018-11-15
  • 出版单位:环境科学与技术
  • 年:2018
  • 期:v.41
  • 基金:国家自然基金项目(41402214,41373083,41611130185)
  • 语种:中文;
  • 页:FJKS201811006
  • 页数:11
  • CN:11
  • ISSN:42-1245/X
  • 分类号:39-49
摘要
粉尘中的砷通过口部无意食入是进入人体的3种摄入途径之一,摄入的砷会危害人体健康。目前研究表明,体外模拟方法测定生物可给性可用来代替动物实验来研究生物有效性。该研究以4种砷污染矿物(赤铁矿、磁铁矿、高岭土、蒙脱石)为研究对象,选用SBRC体外胃肠液模拟方法,研究分析模拟胃肠相条件参数及食物营养元素和成分对砷生物可给性影响。结果表明,随着模拟胃相pH值或固液比的增加,4种矿物的砷生物可给性有下降的趋势;模拟胃相反应时间的增加,砷的生物可给性缓慢增加;进入模拟肠相后,砷的生物可给性均有不同程度的下降;随着反应时间的增加有所提高,模拟肠相pH增加后,砷的生物可给性先增加后减小。在添加抗坏血酸后,砷生物可给性在模拟胃相和肠相中均增大;在添加锰盐、铁盐或铝盐后,模拟肠相中砷的生物可给性有显著的减小,其中添加铁盐在模拟胃相时也有一定的减小,而添加锰盐和铝盐后,模拟胃相的砷生物可给性变化不大。
        Ingestion is one of the three pathways that arsenic in the dust assimilates through the mouth by incidental intake.Bioaccessibility is one of important evaluation methods for the risk of arsenic contaminated soil to human. And the method of in vitro digestion has been used to access the bioaccessibility of arsenic in dust from contaminated soils. Four typical contaminated soils, including hematite, magnetite, kaolinite and montmorillonite were estimated using the method of SBRC(solubility bioavailability research consortium). The effects of simulated gastrointestinal parameters and food nutrition on arsenic bioaccessibility were studied. The results demonstrated that arsenic bioaccessibility tended to decrease with the gastro fluid pH and the ratio of soil to fluid in gastro phase increasing. Arsenic bioaccessibility tended to increase slowly with reaction time of gastro phase. Arsenic bioaccessibility had a different degree of decline when intestinal phase started. With the value of intestinal phase increasing, arsenic bioaccessibility increased firstly and then decreased. After adding manganese salt, iron salt, or aluminum salt, arsenic bioaccessibility decreased significantly in intestinal phase. In gastro phase, arsenic bioaccessibility decreased with adding iron salt and it had no significant change with adding manganese salt or aluminum salt. With adding ascorbic acid,arsenic bioaccessibility increased in gastro/intestinal phase.
引文
[1] Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice:a global health issue[J]. Environmental Pollution, 2008,154(2):169-171.
    [2] Abrahams P W. Soils:their implications to human health[J].Science of the Total Environment, 2002,291(1/2/3):1-32.
    [3] USEPA. Estimation of Relative Bioavailability of Lead in Soil and Soil-like Materials Using in vivo and in vitro Methods[R]. US Environmental Protection Agency, OSWER9285.7-77, May 2007.
    [4] Smith E, Kempson I M, Juhasz A L, et al. In vivo-vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils[J]. Environmental Science and Technology, 2011,45(14):6145-6152.
    [5] Schroder J L, Basta N T, Casteel S W, et al. Validation of the in vitro gastrointestinal method to estimate relative bioavailable lead in contaminated soil[J]. Journal of Environmental Quality, 2004,33(2):513-521.
    [6] Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science and Technology, 1996,30(2):422-430.
    [7] Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soids[J]. Environmental Science and Technology, 2012,46(11):6252-6260.
    [8] Sivieri K, Martha L, Morales V, et al. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem(SHIME Model)[J]. Med Food,2014,17(8):894-901.
    [9] Li J, Li C, Sun H J, et al. Arsenic relative bioavailability in contaminated soils:comparison of animal models, dosing schemes, and biological end points[J]. Environmental Science and Technology, 2016,50(1):453-461.
    [10] Juhasz A L, Weber J, Smith E, et al. Evaluation of SBRCgastric and SBRC-intestinal methods for the prediction of in vivo relative lead bioavailability in contaminated soils[J].Environmental Science and Technology, 2009,43(12):4503-4509.
    [11]黄玲,周存宇,陈志良,等.土壤及作物中重金属生物可给性的体外模拟研究进展[J].长江大学学报:自科版, 2016,13(3):42-47.Huang Ling, Zhou Cunyu, Chen Zhiliang, et al. The in vitro research progress of heavy metals in soil and crops[J]. Journal of Yangtze University:Natural Science Edition, 2016,13(3):42-47.
    [12] Pradeep A, Gijs D L, Moses O, et al. Arsenic bioaccessibility upon gastrointestinal digestion is highly determined by its speciation and lipid-bile salt interactions[J], Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2013, 48(6):656-665.
    [13]付瑾,崔岩山.In vitro系统评价胃肠液pH及土液比对铅、镉、砷生物可给性的影响[J].农业环境科学学报, 2012,31(2):245-251.Fu Jin, Cui Yanshan. In vitro model system to evaluate the influence of pH and soil-gastric/intestinal juices ratio on bioaccessibility of Pb, Cd and As in two typical contaminated soils[J]. Journal of Agro-environment Science, 2012, 31(2):245-251.
    [14] Yu Y X, Han S, Zhang D, et al. Factors affecting the bioaccessibility of polybrominate diphenyl ethers in an in vitro digestion model[J]. Journal of Agriculture and Food Chemistry, 2009,57(6):133-139.
    [15] Alava P, Du L G, Tack F, et al. Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon[J]. Chemosphere,2015,119:757-762.
    [16] Dean J R, Scott W C. Recent developments in assessing the bioavailability of persistent organic pollutants in the environment[J]. TrAC-Trends in Analytical Chemistry, 2004,23(9):609-618.
    [17] Yang J K, Mark O B, Philip M J, et al. Factors controlling the bioaccessibility of arsenic(Ⅴ)and lead(Ⅱ)in soil[J].Soil and Sediment Contamination, 2003,12(2):165-179.
    [18] Tang X Y, Zhu Y G, Shan X Q, et al. The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China[J]. Chemosphere, 2007,66(7):1183-1190.
    [19] Yang J, Mosby D E, Casteel S W, et al. In vitro lead bioaccessibility and phosphate leaching as affected by surface application of phosphoric acid in lead-contaminated soil[J].Archives of Environmental Contamination and Toxicology,2002,43(4):399-405.
    [20]徐瑾.应用体外胃肠模拟法对土壤中多氯联苯的生物有效性研究[D].南京:南京大学, 2011.Xu Jin. Study on the Bioaccessibility of PCBs in Soils Using an in vitro Gastrointestinal Model[D]. Nanjing:Nanjing University, 2011.
    [21] Lakshmipathiraj P, Narasimhan B R, Prabhakar S, et al. Adsorption of arsenate on synthetic goethite from aqueous solutions[J]. Journal of Hazardous Materials, 2006,136(2):281-287.
    [22] Mohapatra D, Mishra D, Chaudhury G R, et al. Effect of dissolved organic matter on the adsorption and stability of As(Ⅴ)on manganese wad[J]. Separation and Purification Technology, 2006,49(3):223-229.
    [23] Fendorf S, Eick M J, Grossl P, et al. Arsenate and chromate retention mechanisms on goethite-1. surface structure[J].Environmental Science and Technology, 1997, 31(2):315-320.
    [24] Goldberg S, Johnson C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. Journal of Colloid and Interface Science, 2001,234(1):204-216.