纳米纤维素及其在水凝胶中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Nanocellulose and Its Application in Hydrogels
  • 作者:杨帆 ; 马建中 ; 鲍艳
  • 英文作者:YANG Fan;MA Jianzhong;BAO Yan;College of Chemistry and Chemical Engineering,Shaanxi University of Science and Technology;College of Bioresources Chemical and Materials Engineering,Shaanxi University of Science and Technology;
  • 关键词:水凝胶 ; 纳米纤维素 ; 吸水性 ; 酸解法 ; 酶解法 ; 表面接枝共聚
  • 英文关键词:hydrogel;;nanocellulose;;water absorption;;acid hydrolysis method;;enzymolysis approach;;surface graft copolymerization
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:陕西科技大学化学与化工学院;陕西科技大学轻工科学与工程学院;
  • 出版日期:2019-04-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家重点研发计划(2017YFB0308602);; 国家自然科学基金(21376145);; 陕西科技大学科研创新团队项目(TD12-03)~~
  • 语种:中文;
  • 页:CLDB201907019
  • 页数:7
  • CN:07
  • ISSN:50-1078/TB
  • 分类号:152-158
摘要
水凝胶是由化学或物理交联形成的具有高分子网络的聚合物,有较好的吸水性和保水性,且在一定压力下不会溢出。随着水凝胶进入人们的视野以来,水凝胶的制备工艺和应用范围在不断地优化和增加,但目前水凝胶仍存在较多问题亟待解决,如吸水性差、保水性差、耐盐性差、机械强度差、降解性差等,且目前多数水凝胶采用的原料仍为石油产品,由于我国资源短缺,水凝胶的进一步发展受到严重阻碍。为了解决这些问题,研究者将视线逐渐转向了天然高分子。天然高分子材料多存在于自然界,资源丰富。最早在水凝胶中引入的主要有淀粉、纤维素、壳聚糖等物质。纤维素是自然界中最丰富的自然资源之一,且本身具有无毒、易降解、生物相容性好等优点,被广泛应用于各个领域。然而,纤维素本身水溶性差、力学性能差,虽能有效提高吸水、保水性,但在制备过程中存在一定的问题。因此,纤维素的改性成为研究热点,羧甲基纤维素等一系列衍生物虽能很好地解决纤维素难溶于水的问题,但水凝胶的凝胶强度和耐盐性仍未解决。众所周知,纳米粒子具有一定的刚性,能有效调节物质的力学性能,因此研究者将视线转向纤维素的另一衍生物,即纳米纤维素。由于纳米纤维素的尺寸为纳米级,其性质也会发生改变,纳米尺寸不仅赋予纤维素无毒、易降解等优点,还使其具有纳米粒子密度低、力学性能好、亲水性强和热膨胀系数低等优点。将纳米纤维素引入水凝胶中,相较于传统的水凝胶主要有三大优势:(1)吸水性增强;(2)耐盐性好;(3)凝胶强度高。基于此,本文在大量文献基础上,首先综述了纳米纤维素及纳米纤维素基水凝胶的制备方法,主要包括物理机械法、化学法和物理化学结合法,并分别总结了三种制备方法的优缺点;然后介绍了纳米纤维素基水凝胶在农业、生物医药、水处理以及其他方面的应用进展;最后,对纳米纤维素基水凝胶制备及应用中面临的挑战进行了总结,并对其发展趋势进行了展望。
        Hydrogels are three-dimensional networks of hydrophilic polymers formed by chemical and/or physical crosslinking. They have favorable water absorption and water retention,and will not overflow under a certain pressure. Since hydrogels entered people's eye shot,the preparation process and application range of hydrogels have been continuously optimized and enlarged. Nevertheless,hydrogels still suffer from poor water absorption,water retention,salt tolerance,mechanical strength,and degradability. Especially,hydrogels are mostly prepared by taking petroleum products as raw materials,and the lack of oil resources in China seriously blocks the further development of hydrogels.For the sake of solving the above problems,researchers have gradually turned their attention to the natural macromolecules. Usually,natural macromolecules exist in nature and are rich in resources. Starch,cellulose,chitosan,etc. are the earliest natural polymers that have been found to be satisfactory for introducing in hydrogels. Among them,cellulose is the most abundant one,and it has been widely used in various fields because of its non-toxic,favorable biodegradable and biocompatible properties. However,the poor water solubility and poor mechanical properties of cellulose have prompted certain hindrance in the preparation process,despite the improved effect of water absorption and water retention. Accordingly,the modification of cellulose has become a hot topic. Although a series of derivatives like carboxymethyl cellulose can solve the problem of cellulose insoluble in water,the gel strength and salt tolerance of hydrogel still remain unsolved. It is universally known that nanoparticles exhibit certain rigidity and are able to regulate the mechanical property of materials. Consequently,nanocellulose,one of the modified derivatives of the cellulose has attracted numerous research interests. Thanks to the nano scale size,nanocellulose not only possesses the advantages of non-toxic,easy degradation,but also show low density,good mechanical properties,strong hydrophilicity,low coefficient of thermal expansion,etc.Compared with tranditional hydrogel,the nanocellulose-based hydrogel is superior in the following three aspects: enhanced water absorption,considerable salt tolerance,and high gel strength.In this article,we summarize the preparation approaches ofnanocellulose and nanocellulose-based hydrogels,including physical,chemical and physico-mechanical combined methods,and analyze the merits and drawbacks of each method. Besides,we introduce the application and development of nanocellulose-based hydrogels in agriculture,biological,water treatment and other fields. Finally,we point out the challenges in the preparation and application of nanocellulose-based hydrogels and proposed the future prospect.
引文
1 Zhu H, Li Y, Fang Z, et al.ACS Nano, 2014, 8(4),3606.
    2 Suttie E D . Polymer Degradation & Stability, 2001, 73(3),567.
    3 Irie Y. Chemistry, 2017, 57(9),598.
    4 Bao Y, Ma J, Li N. Carbohydrate Polymers, 2011, 84(84),76.
    5 Bai Y M. Study on preparation and properties of hydroxyl ethyl acrylate crosslinking copolymer hydrogels. Master's Thesis, East China University of Science and Technology, China, 2014 (in Chinese). 白玉明. 丙烯酸羟乙酯交联共聚物水凝胶的制备及性能研究. 硕士学位论文, 华东理工大学, 2014.
    6 Zhen W J, Shan Z H. Modern Chemical Industry, 2008, 28(6),85(in Chinese). 甄文娟, 单志华. 现代化工, 2008, 28(6),85.
    7 Payen A. Comptes Rendus, 1838, 7, 1052.
    8 Spange S , Heinze T , Klemm D . Polymer Bulletin, 1992, 28(6),697.
    9 Konwarh R, Karak N, Misra M. Biotechnology Advances, 2013, 31(4),421.
    10 Lavoine N, Desloges I, Dufresne A, et al. Carbohydrate Polymers, 2012, 90(2),735.
    11 Beck-Candanedo S, Roman M , Gray D G . Biomacromolecules, 2005, 6(2),1048.
    12 Terech P, Chazeau L, Cavaille J Y. Macromolecules, 1999, 32(6),1872.
    13 Grunert M, Winter W T. Journal of Polymers and the Environment, 2002, 10(1),27.
    14 Revol J F. Carbohydrate Polymers, 1982, 2(2),123.
    15 Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions. De Gruyter, Germany, 2011.
    16 Araki J, Wada M, Kuga S, et al.Colloids & Surfaces A Physicochemical & Engineering Aspects, 1998, 142(1),75.
    17 Zhang T, Zhang Y, Wang X Y, et al. Materials Letters, DOI:10.1016/j.matlet.2018.06.101.
    18 Herrick F W,Casebier R L, Hamilton J K, et al. Journal of Applied Polymer Science, 1983, 37(9),797.
    19 Zimmermann T,P?hler E, Geiger T. Advanced Engineering Materials, 2004, 6(9),754.
    20 Li J, Wang Y, Wei X, et al.Carbohydrate Polymers, 2014, 113,388.
    21 Eriksen ?, Syverud K, Gregersen ?. Nordic Pulp & Paper Research Journal, 2008, 23(3),299.
    22 Spence K L,Venditti R A, Rojas O J, et al. Cellulose, 2011, 18(4),1097.
    23 Charreau H, Foresti M L, Vazquez A. Recent Patents on Nanotechnology, 2013, 7(1),56.
    24 Tang L R. Preparation, properties and application ofnanocellulose crystal. Master's Thesis, Fujian Agriculture and Forestry University, China, 2010 (in Chinese). 唐丽荣. 纳米纤维素晶体的制备、表征及应用研究. 硕士学位论文, 福建农林大学, 2010.
    25 Nickerson R F,Habrle J A. Industrial & Engineering Chemistry, 1947, 39(11),1507.
    26 R?nby B G, Ed. Ribi. Cellular and Molecular Life Sciences, 1949, 6(1),12.
    27 Li S, Li C, Li C, et al.Polymer Degradation & Stability, 2013, 98(9),1940.
    28 Walter B, Gallatin J C.U.S. patent application, US3041246, 1962.
    29 P??kk? M, Ankerfors M, Kosonen H, et al. Biomacromolecules, 2007, 8(6),1934.
    30 Henriksson M, Henriksson G, Berglund L A, et al. European Polymer Journal, 2007, 43(8),3434.
    31 Hassan M L, Bras J, Hassan E A, et al.Industrial Crops & Products, 2014, 55(6),102.
    32 Nechyporchuk O, Pignon F, Belgacem M N. Journal of Materials Science, 2015, 50(2),531.
    33 Xu M, Xu M D, Dai H Q, et al. Journal of Cellulose Science and Technology, 2013, 21(1),70 (in Chinese). 徐媚, 徐梦蝶, 戴红旗, 等. 纤维素科学与技术, 2013, 21(1),70.
    34 Cheng Z L, Xu Q H, Gao Y. Advanced Materials Research, 2012, 627,859.
    35 Fukuzumi H, Saito T, Isogai A. Carbohydrate Polymers, 2013, 93(1),172.
    36 Nooy A E J D, Besemer A C, Bekkum H V. Recueil des Travaux Chimiques des Pays-Bas, 1994, 113(3),165.
    37 Saito T,Nishiyama Y, Putaux J L, et al. Biomacromolecules, 2006, 7(6),1687.
    38 Saito T,Hirota M, Tamura N, et al. Biomacromolecules, 2009, 10(7),1992.
    39 Akira I,Tsuguyuki S, Hayaka F. Nanoscale, 2011, 3(1), 71.
    40 Davis N J,Flitsch S L. Tetrahedron Letters, 1993, 34(7), 1181.
    41 Goetz L, Mathew A,Oksman K, et al. Carbohydrate Polymers, 2009, 75(1),85.
    42 Nair SS, Zhu J Y, Deng Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2014, 2(4),772.
    43 Naseri N, Bhanumathyamma D, Mathew A P, et al. Biomacromolecules, 2016, 17(11),3714.
    44 Ruiz-Palomero C, Soriano M L, Benítez-Martínez S, et al. Sensors & Actuators B Chemical, 2017, 245,946.
    45 Xu Z, Li J, Zhou H, et al. RSC Advances, 2016, 6(49),43626.
    46 Park M, Lee D, Hyun J.Carbohydrate Polymers, 2015, 116,223.
    47 Park M, Chang H,Jeong D H, et al. BioChip Journal, 2013, 7(3),234.
    48 Zhou C, Wu Q, Zhang Q.Colloid and Polymer Science, 2011, 289(3),247.
    49 Spagnol C, Rodrigues F H A, Pereira A G B, et al. Carbohydrate Polymers, 2012, 87(3),2038.
    50 Wang L. Study on alkaline sensitivehydrogel as carrier of insecticide. Master's Thesis, South China Agricultural University, China, 2011 (in Chinese). 王磊. 碱性敏感型水凝胶作为杀虫剂载体的研究. 硕士学位论文, 华南农业大学, 2011.
    51 The global market fornanocellulose to 2017. Edinburgh, Lothian EH74NA, United Kingdom: Futures Markets Inc., 2012, pp. 66.
    52 Wang K,Nune K C, Misra R D. Acta Biomaterialia, 2016, 36,143.
    53 Bhattacharya M,Malinen M M, Lauren P, et al. Journal of Controlled Release, 2012, 164(3),291.
    54 Ahrem H, Pretzel D, Endres M, et al. Acta Biomaterialia, 2014, 10(3),1341.
    55 Sampath U G T M, Ching Y C, Cheng H C, et al. Cellulose, 2017, 24(5),2215.
    56 Zhou Y, Fu S, Zhang L, et al.Carbohydrate Polymers, 2014, 101(1),75.
    57 Xiong Y, Wang C, Wang H, et al. Chemical Engineering Journal, 2018, 337,143.
    58 Saremi. Modeling of nanocellulose hydrogel coatings on textile substrates and enzymatic modification of nanocellulose coatings for sustainable dyeing. Ph.D. Thesis, University of Georgia, America, 2017.
    59 Ruiz-Palomero C, Soriano M L, Benítez-Martínez S, et al. Sensors & Actuators B Chemical, 2017, 245,946.