临近混凝土管桩基础建筑物盾构掘进地层损失控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ground Loss Control During Shield Tunnelling Adjacent to Buildings Supported by Concrete Pipe Piles
  • 作者:喻凯 ; 宁纪维 ; 田哲侃
  • 英文作者:YU Kai;NING Jiwei;TIAN Zhekan;CCCC Tunnel Engineering Co.,Ltd.;Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University;
  • 关键词:地铁 ; 泥水盾构 ; 桩基础 ; 监测 ; 同步注浆 ; 泥浆扩散 ; 有限元分析
  • 英文关键词:subways;;slurry shields;;piles;;monitoring;;synchronous grouting;;slurry diffusion;;finite element analysis
  • 中文刊名:SGJS
  • 英文刊名:Construction Technology
  • 机构:中交隧道工程局有限公司;同济大学道路与交通工程教育部重点实验室;
  • 出版日期:2019-06-10
  • 出版单位:施工技术
  • 年:2019
  • 期:v.48;No.534
  • 语种:中文;
  • 页:SGJS201911022
  • 页数:7
  • CN:11
  • ISSN:11-2831/TU
  • 分类号:88-93+120
摘要
以福州地铁2号线盾构近距离侧穿管桩基础建筑物为工程依托,采用三维有限元并结合现场变形监测数据,分析了30cm盾尾间隙条件下双线盾构掘进引起的地表变形、建筑物倾斜及不同位置基桩内力的变化。结果表明,当盾构掘进引起的地层损失率达到1. 5%时,地表沉降>30mm控制值,而此时建筑物的沉降和倾斜均远小于控制标准,但基桩最大累计弯矩达到抗裂弯矩检验值的63. 5%,较施工前增大11. 8%。本次综合地表变形和基桩附加弯矩变化,建议地层损失率控制在1%。最后,推导了同步注浆量上下限计算方法,并基于现场同步注浆参数及地表沉降监测数据,得出同步注浆浆液在全断面砂层、砂-淤泥质土互层、全断面淤泥质土中的扩散系数。
        During the construction of Fuzhou Subway line 2,the shield machine is tunnelling adjacent to pipe piles subjected to different kinds of buildings. On basis of the tunnelling practice,3 D finite element method combined with the data of the deformation measured in field is used to analyze the variation of surface deformation,building inclination and internal force of the foundation piles caused by double line shield tunnelling with 30 cm shield tail clearance. The results show that when ground loss ratio reaches1. 5%,ground subsidence is larger than the subsidence control value 30 mm; nevertheless the settlement and incline of the buildings are much smaller than the control thresholds. However,the maximum calculative moment of the pile reaches to 63. 5% of the test values of crack moment,which is 11. 8%larger than the moment before construction. The ground loss ratio 1% is set as the control limit by considering the maximum additional moment and ground subsidence. Finally,the method of calculating the lower and upper limits of the volume of synchronous grouting slurry is derived,and the permeability coefficients of the synchronous grouting slurry in the full section of sand layer,the sand-silty soil interlayer and the full section of silty soil are obtained based on the parameters of synchronous grouting and the measured ground subsidence.
引文
[1]伍廷亮,张建新,孟光.隧道盾构施工引起邻近建筑物及其桩基变形的数值分析[J].煤田地质与勘探,2012,40(6):39-43.
    [2]李晓敏.地铁隧道盾构法施工对邻近建筑物桩基变形的影响研究[D].西安:西安科技大学,2013.
    [3]胡德华,段景川.盾构掘进对邻近桩基的变形特征研究[J].隧道建设,2015,35(5):413-418.
    [4]汪鹏程,邵长征,刘志.盾构隧道施工对桩基变形的数值分析[C]//《工业建筑》2016年增刊Ⅰ. 2016.
    [5]姚燕明,曹伟飚,沈张勇.盾构穿越高架对其桩基变形和内力影响分析[J].地下空间与工程学报,2005(6):972-975,982.
    [6]王炳军.地铁隧道盾构法施工对邻近桩基变形与内力的影响[D].西安:西安理工大学,2006.
    [7]王炳军,李宁,柳厚祥,等.地铁隧道盾构法施工对桩基变形与内力的影响[J].铁道科学与工程学报,2006(3):35-40.
    [8]段茗,曾林海.盾构隧道施工对桩基变形与内力影响研究[J].科学技术与工程,2010,10(31):7680-7684.
    [9]涂鹏.成都泥岩地层盾构施工控制技术研究[D].成都:西南交通大学,2017.
    [10]张恒.下穿立交桥盾构隧道掘进控制技术研究[D].成都:西南交通大学,2009.
    [11]北京市勘察设计研究院有限公司.建筑桩基技术规范:JGJ94—2008[S].北京:中国建筑工业出版社,2008.
    [12]中国建筑科学研究院.建筑地基基础设计规范:GB 50007—2011[S].北京:中国建筑工业出版社,2012.