平面微型超级电容器石墨烯电极制备与表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Characterization of Graphene Electrode for Planar Micro-Supercapacitor
  • 作者:张光宇 ; 尹雁 ; 赵鹏飞 ; 刘琳婧 ; 李闯 ; 吕胤霖 ; 陈玉娟 ; 朱大福 ; 杨昕瑞
  • 英文作者:ZHANG Guang-yu;YIN Yan;ZHAO Peng-fei;LIU Lin-jing;LI Chuang;Lü Yin-lin;CHEN Yu-juan;ZHU Da-fu;YANG Xin-rui;School of Applied Sciences,Harbin University of Science and Technology;
  • 关键词:石墨烯 ; 化学气相沉积 ; 平面微型超级电容器
  • 英文关键词:graphene;;chemical vapor deposition;;planar micro-supercapacitor
  • 中文刊名:HLGX
  • 英文刊名:Journal of Harbin University of Science and Technology
  • 机构:哈尔滨理工大学应用科学学院;
  • 出版日期:2019-01-30 09:25
  • 出版单位:哈尔滨理工大学学报
  • 年:2019
  • 期:v.24
  • 基金:黑龙江省自然科学基金(F200831);; 黑龙江省大学生创新创业训练计划项目(201510214050)
  • 语种:中文;
  • 页:HLGX201901023
  • 页数:6
  • CN:01
  • ISSN:23-1404/N
  • 分类号:136-141
摘要
为了研究化学气相沉积法(CVD)制备石墨烯电极性能,通过对CVD工艺参数的改进,成功地制备出了符合全固态平面微型超级电容器离子传输机制所需要的石墨烯薄膜电极。对比相同生长时间,不同甲烷浓度的石墨烯薄膜的性能;对比相同甲烷浓度,不同生长时间的石墨烯薄膜性能。结果表明,温度1 000℃、甲烷流量35 sccm、氢气流量10 sccm、生长时间60 min时,制备出的石墨烯薄膜质量和性能最好。此时石墨烯薄膜具有较低的薄膜方阻(60.28Ω/sq-155.75Ω/sq),厚度为1.25 nm。为平面微型超级电容器的进一步研究提供了重要参考。
        Considering the low performance of graphene electrode prepared by chemical vapor deposition(CVD) method, the graphene film electrode required for the ion transport mechanism of the solid planar micro super capacitor was successfully prepared through improved the craft parameter. The properties of graphene films with the same growth time and different methane flow rate were compared, and the performances of graphene films with the same methane flow rate and different growth time were compared. The results show that the graphene films with the best quality and performance when the growth temperature, methane flow rate, hydrogen flow rate and the growth time were 1 000℃, 35 sccm, 10 sccm and 60 min, respectively. Moreover, the graphene film has a lower Square resistance of 60.28Ω/sq-155.75Ω/sq, and the thickness of the film is 1.25 nm. This study provides an important reference for the further research of the planar micro capacitor.
引文
[1] HU H, PEI Z,Ye C. Recent Advances in Designing and Fabrication of Planar Micro-supercapacitors for On-chip Energy Storage[J]. Energy Storage Materials, 2015(1):82.
    [2] KURRA N, JIANG Q,ALSHAREEF H N. A General Strategy for the Fabrication of High Performance Microsupercapacitors[J]. Nano Energy, 2015(16):1.
    [3] SUN X Z, ZHANG X, HUANG B, et al. Effects of Separator on the Electrochemical Performance of Electrical Doublr-Layer Capacitor and Hybrid Batter-Supercapacitor[J]. Acta Physico-Chimica, 2014, 30(3):485.
    [4] LAMBERT S M, Pickert V, Holden J, et al. Comparison of Supercapacitor and Lithium-ion Capacitor Technologies for Power Electronics Applications[C]// Iet International Conference on Power Electronics, Machines and Drives. IET, 2010:1.
    [5] HUI S Y. Planar Wireless Charging Technology for Portable Electronic Products and Qi[J]. Proceedings of the IEEE, 2013, 101(6):1290.
    [6] KURRA N, HOTA M K, Alshareef H N. Conducting Polymer Micro-supercapacitors for Flexible Energy Storage and Ac Line-filtering[J]. Nano Energy, 2015(13):500.
    [7] FRACKWIAK E. Carbon Materials for Application[J]. Physical Chemistry Chemical Physics Pccp, 2007, 9(15):1774.
    [8] XIONG G, MENG C, Reifenberger R G, et al. A Review of Graphene-Based Electrochemical Microsupercapacitors[M]. Electroanalysis, 2014,26(1):30.
    [9] BEIDAGHI M,WANG C. Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance[J]. Advanced Functional Materials, 2012, 22(21):4500.
    [10] JOHN R M, Outlaw R A,Holloway B C. Graphene Double-Layer Capacitor with ac Line-Filtering Performance[J]. Science, 2010,329(5999):1637.
    [11] YAN H,LOW T, Guinea F, et al. Tunable Phonon-Induced Transparency in Bilayer Graphene Nanoribbons[J]. Nano Letters, 2013,14(8):4581.
    [12] LI J, ZHOU Y,QUAN B, et al. Graphene-metamaterial Hybridization for Enhanced Terahertz Response[J]. Carbon, 2014,78(18):102.
    [13] 沈宸, 陆云. 石墨烯/导电聚合物复合材料在超级电容器电极材料方面的研究进展[J].高分子学报, 2014(10):1328.
    [14] 陈仲欣, 卢红斌. 石墨烯-聚苯胺杂化超级电容器电极材料[J]. 高等学校化学学报,2013(9):2020.
    [15] WU Z S, PARVEZ K, FENG X, et al. Graphene-based in-plane Micro-supercapacitors with High Power and Energy Densities[R]. Nature Communications, 2013, 4(9):2487.
    [16] Yoo J J, BALAKRISHNAN K, Huang J, et al. Ultrathin Planar Graphene Supercapacitors[J]. ACS Publications , 2011,11(4): 1423.
    [17] CHOUBAK S, LEVESQUE PL,Gaufres E, et al. Graphene CVD: Interplay Between Growth and Etching on Morphology and Stacking by Hydrogen and Oxidizing Impurities[J]. Journal of Physical Chemistry C, 2016, 118(37):21532.
    [18] TIAN J, HU B,WEI Z, et al. Surface Structure Deduced Differences of Copper Foil and Film for Graphene CVD Growth[J]. Applied Surface Science, 2014, 300(2):73.
    [19] CABRERO-VILATELA A, WEATHERUP R S,BRAEUNINGER-WEIMER P, et al. Towards a General Growth Model for Graphene CVD on Transition Metal Catalysts[J]. Nanoscale, 2016, 8(4):2149.
    [20] BHAVIRIPUDI S, JIA X, DRESSELHAUS M S, et al. Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst[J]. Nano Letters, 2010, 10(10): 4128.
    [21] GAO W,SINGH N, SONG L, et al. Diret Laser Writing of Micro-supercapacitors on Hydrated Graphite Oxide Films[J]. Nature Nanotechnology, 2011,6(8):496.
    [22] WANG Y, SHI Y, ZHAO C X, et al. Printed All-solid Flexible Micro-surpercapacitors:towards the General Route for High Energu Storage Devices[R]. Nanotechnology, 2014,25(9):094010.
    [23] ELKADY M F, KANER R B. Scalable Fabrication of High-power Graphene Micro-surpercapacitors for Flexible and On-chip Energy Storage[R].Nature Communications, 2013,4(2):1475.
    [24] WU Z S, PARVEZ K, FENG X, et al. Graphene-based In-plane Micro-supercapacitors with High Power and Energy Densities[R]. Nature Communications, 2013,4(9):2487.
    [25] WU Z S, FENG X, CHENG H M, et al. Recent Advances in Graphene-based Planar Micro-supercapacitors for On-chip Energy Storage[J]. National Science Review, 2014, 1(2):277.
    [26] WU ZS, PARVEZ K,FENG X, et al. Photolithographic Fabrication of High-performance All-solid-state Graphene-based Planar Micro-supercapacitors with Different Interdigital Fingers[J]. Journal of Materials Chemistry A, 2014, 2(22):8288.
    [27] KIDAMBI P R, DUCATI C, DLUBAK B, et al. The Parameter Space of Graphene CVD on Polycrystalline Cu[J]. Journal of Physical Chemistry C, 2012, 116(42):22492.