蓖麻油甲酯基润滑油基础油的制备及性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and properties of lubricant base oils from castor oil methyl esters
  • 作者:常晓梅 ; 袁红 ; 张泓
  • 英文作者:Chang Xiaomei;Yuan Hong;Zhang Hong;Chemical Science and Engineering College,North Minzu University;Key Laboratory of Chemical Engineering and Technology,State Ethnic Affairs Commission,North Minzu University;
  • 关键词:环氧化 ; 蓖麻油 ; 氧化稳定性 ; 低温流动性
  • 英文关键词:epoxidation;;castor oi;;oxidative stability;;low temperature fluidity
  • 中文刊名:HNSX
  • 英文刊名:Journal of Henan Normal University(Natural Science Edition)
  • 机构:北方民族大学化学与化工学院;北方民族大学国家民委化工技术基础重点实验室;
  • 出版日期:2019-06-04 11:42
  • 出版单位:河南师范大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.207
  • 基金:宁夏高等学校科学技术研究项目(NGY2017157)
  • 语种:中文;
  • 页:HNSX201904010
  • 页数:8
  • CN:04
  • ISSN:41-1109/N
  • 分类号:77-84
摘要
蓖麻油甲酯(FAME)是蓖麻油与甲醇通过酯交换反应生成得到,将FAME与甲酸和过氧化氢,在催化剂硫酸作用下,发生环氧化反应生成环氧脂肪酸甲酯(EFAME).研究了H_2O_2的滴加温度,反应温度,反应时间,H_2O_2/HCOOH/FAME物质的量比,催化剂用量等环氧化反应条件.对产品的碘值,环氧值,黏度(40℃),倾点,凝点和氧化稳定性进行了测定.结果表明,相比FAME,EFAME的碘值从80.1 g/(100 g)降至2.8 g/(100 g),环氧值从0.03 mol/100g增加至1.75 mol/100g,因此,EFAME的氧化稳定性显著提高,但是低温流动性变差,黏度也增加.在下列条件:H_2O_2滴加温度50℃,反应温度50℃,反应时间10 h,n(H_2O_2)∶n(HCOOH)∶n(FAME)=5∶1∶1,催化剂用量1.5 g,环氧化反应产物的氧化稳定性较好,缓和氧化后非挥发相的酸值X_1为0.7×10~(-6) mgKOH/g,缓和氧化后挥发相的酸值X_2为0.5×10~(-8) mgKOH/g,深度氧化后沉积物含量X_3为70.2%(质量分数),深度氧化后的酸值X_4为3.3×10~(-6) mgKOH/g,相应的碘值为2.8 g/(100 g),环氧值1.75 mol/(100 g).
        Castor oil methyl ester(FAME) was obtained by transesterification of castor oil with methanol. The epoxidation reaction of FAME with formic acid and hydrogen peroxide under the action of catalyst sulfuric acid produced epoxy fatty acid methyl ester(EFAME).The epoxidation conditions of H_2O_2 dropping temperature, reaction temperature, reaction time, H_2O_2/HCOOH/FAME molar ratio, and catalyst dosage were studied. The iodine value, epoxy value, viscosity(40℃), pour point, condensation point and oxidation stability of the product were measured. The results showed that compared with FAME,the iodine value of EFAME decreased from 80.1 g/(100 g) to 2.8 g/(100 g), and the epoxy value increased from 0.03 mol/(100 g) to 1.75 mol/(100 g). Therefore, the oxidation stability of EFAME was significantly improved. However, the low-temperature fluidity deteriorates and the viscosity also increases. Under the following conditions: H_2O_2 dropping temperature 50 °C, reaction temperature 50°C, reaction time 10 h, n(H_2O_2)∶n(HCOOH)∶n(FAME)=5∶1∶1, catalyst dosage 1.5 g, epoxidation The oxidation stability of the reaction product is good, and the acid value of the nonvolatile phase after the oxidation is moderated is 0.7×10~(-6) mgKOH/g, and the acid value of the volatile phase after the oxidation is moderated is 0.5×10~(-8) mgKOH/g, and the oxidation is deep. The post-deposit content was 70.2% and the acid value after deep oxidation was 3.3×10~(-6) mgKOH/g, the corresponding iodine value was 2.8 g/(100 g), and the epoxy value was 1.75 mol/(100 g).
引文
[1] Fmt L,Rocha B S,Rola E M,et al.Assessment of biodegradability and oxidation stability of mineral,vegetable and synthetic oil samples[J].Industrial Crops and Products,2011,33(3):579-583.
    [2] Heikal E K,Elmelawy M S,Khalil S A,et al.Manufacturing of environment friendly biolubricants from vegetable oils[J].Egyptian Journal of Petroleum,2017,26(1):53-59.
    [3] Garcés R,Martínez-Force E,Salas J J.Vegetable oil basestocks for lubricants[J].Grasasy Aceites ,2011,62(1):21-28.
    [4] Zhang C,Garrison T F,Madbouly S A,et al.Recent advances in vegetable oil-based polymers and their composites[J].Progress in Polymer Science,2017,71:91-143.
    [5] Mcnutt J,He Q.Development of biolubricants from vegetable oils via chemical modification[J].Journal of Industrial and Engineering Chemistry,2016,36:1-12.
    [6] Lathi P S,Bo M.Green approach for the preparation of biodegradable lubricant base stock from epoxidized vegetable oil[J].Applied Catalysis B:Environmental,2007,69(3/4):207-212.
    [7] Aluyor E O,Obahiagbon K O,Orijesu M.Biodegradation of vegetable oils:a review[J].Scientific research and essays,2009,4(6):543-548.
    [8] Cermak S C,Biresaw G,Terry A,et al.New crop oils-Properties as potential lubricants[J].Industrial Crops and Products,2013,44(2):232-239.
    [9] Soni S,Agarwal M.Lubricants from renewable energy sources-a review[J].Green Chemistry Letters and Reviews,2014,7(4):359-382.
    [10] Erhan S Z,Sharma B K,Perez J M.Oxidation and low temperature stability of vegetable oil-based lubricants[J].Industrial Crops and Products,2006,24(3):292-299.
    [11] Zhang Z,Wang Y,Ma X,et al.Characterisation and oxidation stability of monoacylglycerols from partially hydrogenated corn oil[J].Food Chemistry,2015,173:70-79.
    [12] Spector A A,Kim H Y.Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism[J].Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids,2015,1851(4):356-365.
    [13] Shomchoam B,Yoosuk B.Eco-friendly lubricant by partial hydrogenation of palm oil over Pd/γ-Al2O3,catalyst[J].Industrial Crops and Products,2014,62:395-399.
    [14] Kim N,Li Y,Sun X S.Epoxidation of Camelina sativa,oil and peel adhesion properties[J].Industrial Crops and Products ,2015,64(64):1-8.
    [15] Carbonell-verdu A,Bernardi L,Garcia-garcia D,et al.Development of environmentally friendly composite matrices from epoxidized cottonseed oil[J].European Polymer Journal,2015,63:1-10.
    [16] Maria A,Saboya R,Cecilia J A,et al.Synthesis of biolubricants by the esterification of free fatty acids from castor oil with branched alcohols using cationic exchange resins as catalysts[J].Industrial Crops and Products,2017,104:52-61.
    [17] Madankar C S,Pradhan S,Naik S N.Parametric study of reactive extraction of castor seed (Ricinus communis,L.) for methyl ester production and its potential use as bio lubricant[J].Industrial Crops and Products,2013,43(1):283-290.
    [18] 中华人民共和国国家质量监督检验检疫总局.GB/T 5532-2008 动植物油脂碘值的测定[S].北京:中国标准出版社,2008.
    [19] 中华人民共和国国家质量监督检验检疫总局.GB/T 1677-2008 增塑剂环氧值的测定[S].北京:中国标准出版社,2008.
    [20] 国家标准局.GB265-1988石油产品运动粘度测定法和动力粘度计算法(GBT)[S].北京:中国标准出版社,1989.
    [21] 中华人民共和国国家质量监督检验检疫总局.GB/T 3535-2006石油产品倾点测定法[S].北京:中国标准出版社,2006.
    [22] 国家标准局.GB 510-83 石油产品凝点测定法[S].北京:中国标准出版社,2006.
    [23] 行业标准-石油化工(CN-SH).SH/T0196-1992 润滑油抗氧化安定性测定法[S].[出版者不详],1992.
    [24] Snezana S F,Milovan J,Olga B.Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin[J].Chemical Engineering and Processing:Process Intensification,2012,62(6):106-113.
    [25] Sienkiewicz A M,Czub P.The unique activity of catalyst in the epoxidation of soybean oil and following reaction of epoxidized product with bisphenol A[J].Industrial Crops and Products,2016,83:755-773.
    [26] Borugadda V B,Goud V V.Response surface methodology for optimization of bio-lubricant basestock synthesis from high free fatty acids castor oil[J].Energy Science and Engineering,2015,3(4):371-383.