带等压预燃的旋转爆震发动机循环效率分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Efficiency Analysis for Isobaric Pre-Combustion Rotating Detonation Engine Cycle
  • 作者:王丹 ; 陈宏玉 ; 严宇 ; 洪流
  • 英文作者:WANG Dan;CHEN Hong-yu;YAN Yu;HONG Liu;Science and Technology on Liquid Rocket Engine Laboratory,Xi'an Aerospace Propulsion Institute;
  • 关键词:两级燃烧 ; 旋转爆震发动机 ; 热效率 ; 预燃 ; 性能分析
  • 英文关键词:Two stage combustion;;Rotating detonation engine;;Thermal efficiency;;Pre-combustion;;Performance analysis
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西安航天动力研究所液体火箭发动机技术重点实验室;
  • 出版日期:2018-12-28 15:59
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.263
  • 语种:中文;
  • 页:TJJS201905003
  • 页数:8
  • CN:05
  • ISSN:11-1813/V
  • 分类号:16-23
摘要
针对煤油-空气旋转爆震发动机(RDE)点火困难问题,提出一种采用等压预燃的爆震循环模式。通过零维的热效率理论分析方法,建立了一种针对于带预燃的爆震热循环效率模型。结果表明,预燃爆震循环的热效率高于理想Brayton循环,低于理想爆震循环。预燃空气比例是热效率的重要影响因素,循环温比为2,预燃空气比例为0时,预燃爆震循环比理想Brayton循环热效率高26.4%,而当预燃空气量逐渐增加,预燃循环效率提升的比例逐渐变小。采用预燃方式有利于液态煤油的点火起爆,在低温比,低预燃空气比例条件下优势明显。试验中应当在保证煤油能够起爆的前提下采用尽可能少的预燃空气。
        A isobaric pre-combustion rotating detonation engine(RDE)cycle was proposed to solve the ignition conundrum of kerosene and air. Thermal efficiency model of the isobaric pre-combustion detonation cycle was built by zero dimensional method. The results show that the thermal efficiency of isobaric pre-combustion detonation cycle is higher than that of ideal Brayton cycle and lower than that of ideal detonation cycle. The air ratio of isobaric pre-combustion effects on thermal efficiency greatly. When the cycle temperature ratio is 2 and the pre-combustion air ratio is 0,the thermal efficiency of pre-combustion detonation cycle is 26.4% higher than that of the ideal Brayton cycle. The thermal efficiency rising percentage of pre-combustion detonation cycle declines with air ratio increasing. Pre-combustion is conducive to liquid kerosene detonation ignition. Also precombustion have obvious advantages in low temperature ratio and low pre-combustion air ratio condition. As little as possible air should be used under the successful ignition premise in the experiment.
引文
[1]母云涛,王玉清,李立翰,等.脉冲爆震发动机点火过程离子催化效应数值模拟[J].航空动力学报,2015,30(3):694-700.
    [2]李自然,林志勇,韩旭.超声速斜爆震发动机起爆过程研究综述[J].火箭推进,2013,39(3):1-8.
    [3] Jason C S. Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air[D]. WrightPatterson AFB:Air Force Institute of Technology,2012.
    [4] Kazuki I,Yuichi K,Ken M,et al. Performance Evaluation of a Rotating Detonation Engine with Conical-Shape Tail[R]. AIAA 2015-0630.
    [5] Brent A R,Daniel R R,Andrew W C,et al. Imaging of OH*Chemiluminescence in an Optically Accessible Nonpremixed Rotating Detonation Engine[R]. AIAA2015-1604.
    [6] Vijay A,Andrew S G,Ephraim G. Hollow Rotating Detonation Combustor[R]. AIAA 2016-0124.
    [7] Andrew N,John H,James K,et al. Flowfield Characterization of a Rotating Detonation Engine[R]. AIAA2013-0278.
    [8] Frolov S M,Aksenov V S,Ivanov V S,et al. LargeScale Hydrogen-Air Continuous Detonation Combustor[J]. International Journal of Hydrogen Energy,2015(40):1616-1623.
    [9] Bykovskii F A,Zhdan S A,Vedernikov E F. Continuous Spin Detonations[J]. Journal of Propulsion and Power,2006,22(6):1204-1216.
    [10] Bykovskii F A,Zhdan S A,Vedernikov E F. Continuous Spin Detonation of Hydrogen-Oxygen Mixtures(1)Annular Cylindrical Combustion[J]. Combustion,Explosion,and Shock Waves,2008,44(2):150-162.
    [11] Bykovskii F A,Zhdan S A,Vedernikov E F. Continuous Spin Detonation of Hydrogen-Oxygen Mixtures(2)Combustor with an Expanding Annular Channel[J].Combustion,Explosion,and Shock Waves,2008,44(3):330-342.
    [12] Matthew L,Fotia,John H. Experimental Study of Performance Scaling in Rotating Detonation Engines Operated on Hydrogen and Gaseous Hydrocarbon Fuel[R].AIAA 2015-3626.
    [13]刘世杰.连续旋转爆震波结构、传播模态及自持机理研究[D].长沙:国防科学技术大学,2012.
    [14]刘世杰,林志勇,刘卫东,等.连续旋转爆震波传播过程研究(II):双波对撞传播模式[J].推进技术,2014,35(2):269-275.(LIU Shi-jie,LIN Zhi-yong,LIU Wei-dong,et al. Research on Continuous Rotating Detonation Wave Propagation Process(II):Two-Wave Collision Propagation Mode[J]. Journal of Propulsion Technology,2014,35(2):269-275.)
    [15]刘世杰,林志勇,林伟,等. H2/Air连续旋转爆震波的起爆及传播过程试验[J].推进技术,2012,33(3):483-489.(LIU Shi-jie,LIN Zhi-yong,LIN Wei,et al. Experiment on the Ignition and Propagation Process of H2/Air Continuous Rotating Detonation Wave[J].Journal of Propulsion Technology,2012,33(3):483-489.)
    [16] WANG Chao,LIU Wei-dong,LIU Shi-jie,et al. Experimental Investigation on Detonation Combustion Patterns of Hydrogen/Vitiated Air Within Annular Combustor[J]. Experimental Thermal and Fluid Science,2015,66(1):269-278.
    [17]刘世杰,林志勇,孙明波,等.旋转爆震波发动机二维数值模拟[J].推进技术,2010,31(5):634-640.(LIU Shi-jie,LIN Zhi-yong,SUN Ming-bo,et al.Two-Dimensional Numerical Simulation of Rotating Detonation Wave Engine[J]. Journal of Propulsion Technology,2010,31(5):634-640.)
    [18]刘世杰,覃慧,林志勇,等.连续旋转爆震波细致结构及自持机理[J].推进技术,2011,32(3):431-436.(LIU Shi-jie,QIN Hui,LIN Zhi-yong,et al. Detailed Structure and Propagating Mechanism Research on Continuous Rotating Detonation Wave[J]. Journal of Propulsion Technology,2011,32(3):431-436.)
    [19]邵业涛,刘勐,王健平.圆柱坐标系下连续旋转爆轰发动机的数值模拟[J].推进技术,2009,30(6):717-721.(SHAO Ye-tao,LIU Meng,WANG Jianping. Numerical Simulation of Continuous Rotating Detonation Engine in Column Coordinate[J]. Journal of Propulsion Technology,2009,30(6):717-721.)
    [20]马虎,武晓松,王栋,等.旋转爆震发动机数值研究[J].推进技术,2012,33(5):820-825.(MA Hu,WU Xiao-song,WANG Dong,et al. Numerical Investigation for Rotating Detonation Engine[J]. Journal of Propulsion Technology,2012,33(5):820-825.)
    [21] ZHENG Quan,WENG Chun-sheng,BAI Qiao-dong.Experimental Research on the Propagation Process of Continuous Rotating Detonation Wave[J]. Defence Technology,2013,9(4):187-258.
    [22] Shapiro A H,The Dynamics and Thermodynamics of Compressible Fluid Flow[M]. New York:Ronald Press,1953.