硫氮共掺杂石墨烯的制备及其电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and electrochemical properties of sulfur-nitrogen co-doped graphene
  • 作者:李子庆 ; 赫文秀 ; 张永强 ; 刘斌 ; 蒋梦 ; 刘君红
  • 英文作者:LI Ziqing;HE Wenxiu;ZHANG Yongqiang;LIU Bin;JIANG Meng;LIU Junhong;School of Chemistry and Chemical Engineering, Inner Mongolia University of Science &Technology;Department of Metallurgy and Chemical Engineering, Baotou Iron and Steel Vocational and Technical College;
  • 关键词:石墨烯 ; 水热 ; 制备 ; 显微结构 ; 电化学
  • 英文关键词:graphene;;hydrothermal;;preparation;;microstructure;;electrochemistry
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:内蒙古科技大学化学与化工学院;包头钢铁职业技术学院冶金化工系;
  • 出版日期:2018-07-05
  • 出版单位:化工进展
  • 年:2018
  • 期:v.37;No.322
  • 基金:国家自然科学基金(21766024);; 内蒙古自然科学基金(2015MS0208);; 内蒙古自治区高等学校青年科技英才计划-青年科技领军人才A类项目(NJYT-14-A08);; 包头市科技计划(2015C2004-1,2016-4)项目
  • 语种:中文;
  • 页:HGJZ201807030
  • 页数:8
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:263-270
摘要
采用改进的Hummers方法经冷冻干燥制备氧化石墨烯(GO),以硫脲作为还原剂和掺杂剂,按GO与硫脲的质量比为1∶10、1∶20、1∶30、1∶40的用量分别加入硫脲,采用一步水热法合成硫氮共掺杂石墨烯。通过X射线粉末衍射(XRD)、场发射扫描电子显微镜(FESEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、氮气吸脱附分析等手段表征了样品的微观结构和形貌,通过循环伏安、电化学交流阻抗、恒流充放电技术对样品进行电化学性能测试。结果表明:当GO∶硫脲=1∶30(质量比)时,得到的硫氮共掺杂石墨烯(SNG)中硫掺杂量最高为1.86%(质量分数)、氮掺杂质量分数最高为7.73%,比表面积达175.8m2/g,且具有较窄的孔径分布,集中在3~5nm。在电流密度为1A/g时,SNG的比电容最高达197.2F/g,经过2000次充放电循环后,比电容为177.3F/g,电容保持率达90%。
        The modified Hummers method was used to prepare graphite oxide(GO) through freeze drying. The sulfur-nitrogen co-doped graphene samples were then synthesized by one-step hydrothermal method using thiourea as dopant and reductant,with mass ratios of GO to thiourea of 1∶10, 1∶20, 1∶30, 1∶40 respectively. The microstructure and morphology of the as-produced graphene were characterized by X-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, X-ray photoelectron spectroscopy and nitrogen adsorption-desorption analysis. The electrochemical performances of the samples were investigated by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge(GCD) technology. The results showed that the sulfur-nitrogen co-doped graphene had the highest sulfur content of 1.86% and nitrogen content of 7.73%, with a specific surface area of 175.8 m2/g and the pore sizes were narrowly distributed in between 3—5 nm when the mass ratio of GO∶thiourea is 1∶30. At 1 A/g current density, SNG had a specific capacitance of 197.2 F/g, and only 10% were lost after 2000 charge and discharge cycles.
引文
[1]SUN Z,YAN Z,YAO J,et al.Growth of graphene from solid carbon sources[J].Nature,2010,468(7323):549-552.
    [2]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [3]SUN Y,WU Q,SHI G.Graphene based new energy materials[J].Energy&Environmental Science,2011,4(4):1113-1132.
    [4]贾进,杨晓阳,闫艳,等.碳化物衍生碳的制备及其在气体存储与超级电容器领域的应用研究进展[J].化工进展,2014,33(10):2681-2686.JIA J,YANG X Y,YAN Y,et al.Progress of preparation of carbide-derived carbon and application in gas storage and supercapacitors[J].Chemical Industry and Engineering Progress,2014,33(10):2681-2686.
    [5]TOMMASO C,VALENTINA T.Multistable rippling of graphene on Si C:a density functional theory study[J].J.Phys.Chem.C,2016,120(14):7670-7677.
    [6]LIU Y Z,LI Y F,SU F Y.Easy one-step synthesis of N-doped graphene for supercapacitors[J].Energy Storage Materials,2016,2:69-75.
    [7]JIAO L Y,ZHANG L,WANG X R,et al.Narrow graphene nanoribbons from carbon nanotubes[J].Nature,2009,459:877-880.
    [8]QU L,LIU Y,BAEK J B,et al.Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J].ACS Nano,2010,4(3):1321-1326.
    [9]NAGAIAH T C,KUNDU S,BRON M,et al.Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium[J].Electrochemistry Communications,2010,12(3):338-341.
    [10]PARK J,JANG Y,KIM Y,et al.Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction[J].Physical Chemistry Chemical Physics,2014,16:103-109.
    [11]POH H,SIMEK P,SOFER Z,et al.Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S,SO2,or CS2 gas[J].ACS Nano,2013,7:5262-5272.
    [12]GAO H.Synthesis of S-doped graphene by liquid precursor[J].Nanotechnology,2012,23:275-605.
    [13]WANG R,HIGGINS D,HOQUE M.Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst[J].Scientific Reports,2013,3:2431.
    [14]GONG K,DU F,XIA Z,et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323:760-764.
    [15]QU L,LIU Y,BAEK J,et al.Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J].ACS Nano,2010,4:1321-1326.
    [16]LIANG J,YAN J,MIETEK J,et al.Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J].International Edition,2012,124:11664-11668.
    [17]MIAO Q H,WANG L D,LIU Z Y,et al.Magnetic properties of N-doped graphene with high Curie temperature[J].Scientific Reports,2016,6:21832.
    [18]CHEN S,BI J,ZHAO Y,et al.Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction[J].Advanced Materials,2012,24(41):5593-5597.
    [19]CHOI C H,PARK S H,WOO S I.Binary and ternary doping of nitrogen,boron,and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J].ACS Nano,2012,6(8):7084-7091.
    [20]WEHLING T,NOVOSELOV K,MOROZOV S,et al.Molecular doping of graphene[J].Nano Letters,2008,8(1):173-177.
    [21]WUNSCH B,STAUBER T,SOLS F,et al.Dynamical polarization of graphene at finite doping[J].New Journal of Physics,2006,8(12):318-323.
    [22]NAGAIAH T C,KUNDU S,BRON M,et al.Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium[J].Electrochemistry Communications,2010,12(3):338-341.
    [23]XU J,DONG G,JIN C,et al.Sulfur and nitrogen co-doped,few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction[J].Chem.Sus.Chem.,2013,6(3):493-499.
    [24]HUMMERS W S,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
    [25]MOU Z G,CHEN,X Y,DU Y K,et al.Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea[J].Applied Surface Science,2011,258(5):1704-1710.
    [26]ZHANG M Y,SUN Y Y,SHI J J,et al.Selective glycerol oxidation using platinum nanoparticles supported on multi-walled carbon nanotubes and nitrogen-doped graphene hybrid[J].Chinese Journal of Catalysis,2017,38(3):537-544.
    [27]NIE R F,MIAO M,DU W C,et al.Selective hydrogenation of C==C bond over N-doped reduced graphene oxides supported Pd catalyst[J].Applied Catalysis B:Environmental,2016,180:607-613.