超重力方向调节电沉积镍箔表面形貌和力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity
  • 作者:董亮 ; 郭丰 ; 王明涌
  • 英文作者:DONG Liang;GUO Feng;WANG Mingyong;State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing;
  • 关键词:超重力 ; 电沉积 ; 镍箔 ; 表面形貌 ; 力学性能
  • 英文关键词:super gravity;;electrodeposition;;Ni foil;;surface morphology;;mechanical property
  • 中文刊名:JXYS
  • 英文刊名:Nonferrous Metals Science and Engineering
  • 机构:北京科技大学钢铁冶金新技术国家重点实验;
  • 出版日期:2019-04-19 17:28
  • 出版单位:有色金属科学与工程
  • 年:2019
  • 期:v.10;No.53
  • 基金:国家自然科学基金资助项目(51874020);; 中央高校基础研究基金资助项目
  • 语种:中文;
  • 页:JXYS201903005
  • 页数:8
  • CN:03
  • ISSN:36-1311/TF
  • 分类号:30-37
摘要
在电场方向与超重力方向相同和相反条件下电沉积制备金属镍箔.利用扫描电镜和原子力显微镜对镍箔表面形貌和粗糙度进行了表征,并测试和对比了各种重力条件下电沉积镍箔硬度和拉伸强度.结果表明,在超重力场作用下电沉积镍箔表面变得更加致密、平整,晶粒细化,粗糙度明显降低.特别是,当超重力与电场方向相反(电极C)时,镍箔表面更为平整致密.当超重力方向和电场方向相同(电极B)时,镍箔的HV硬度可达839,抗拉强度可达944 MPa,性能优于电极C镍箔片,且远高于常重力条件下电沉积镍箔HV硬度的294和抗拉强度298 MPa.
        Ni foil was electrodeposited under vertical super gravity field with same and opposite direction to electric field. Its surface morphologies and roughness were characterized by SEM and AFM. Its hardness and tensile strength under different gravities were also examined and compared. The results indicated that its surface electrodeposited under super gravity field was more compact and flatter as the grains were refined and the roughness sharply decreased, especially with the opposite direction between super gravity and electric field(Electrode C). The mechanical properties were improved by super gravity field. When the directions of super gravity and electric field were the same(Electrode B), its hardness and tensile strength were up to 839 HV and 944 MPa, respectively. The values were superior to that obtained on Electrode C and much higher than that under normal gravity condition(294 HV and 298 MPa).
引文
[1]刘柏雄,钟素文.电沉积法制备泡沫镍的研究[J].有色金属科学与工程,2011,2(3):28-31.
    [2]张荣伟,孙军伟,李升燕,等.锰元素对铜镍合金电化学性能的影响[J].有色金属科学与工程,2018,9(4):60-65.
    [3]陈敏,肖玄,汤爱涛.钛精矿制备Fe-TiCN金属陶瓷的研究[J].有色金属科学与工程,2015,6(5):70-72.
    [4]宋高阳,宋波,杨玉厚等.利用超重力分离5052铝合金熔体中的非金属夹杂[J].有色金属科学与工程,2015,6(1):29-34.
    [5]高启瑞,宋波,杨占兵,等.含钛高炉渣碳化及超重力分离碳化钛的研究[J].有色金属科学与工程,2017,8(2):1-7.
    [6]PLOWMAN B J,JONES L A,BHARGAVA S K.Building with bubbles:the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition[J].Chemical Communication,2015,51:4331-4346.
    [7]WANG M Y,WANG Z,GUO Z C.Electrodeposited free-crack niw films under super gravity filed:structure and excellent corrosion property[J].Materials Chemistry and Physics,2014,148:245-252.
    [8]NIU X H,LAN M B,ZHAO H L,et al.Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures[J].Analytical Chemistry,2013,85:3561-3569.
    [9]LIU T,GUO Z C,WANG Z,et al.Structure and mechanical properties of iron foil electrodeposited in super gravity field[J].Surface and Coatings Technology,2010,204:3135-3140.
    [10]NIA N S,CREUS J,FEAUGAS X,et al.Influence of metallurgical parameters on the electrochemical behavior of electrodeposited ni and ni-w nanocrystalline alloys[J].Applied Surface Science,2016,370:149-159.
    [11]GAO S,LIN Y,JIAO X C,et al.Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J].Nature,2016,529:68-71.
    [12]YU X T,WANG M Y,WANG Z,et al.The structure evolution mechanism of electrodeposited porous Ni films on Ni4Cl concentration[J].Applied Surface Science,2016,360:502-509.
    [13]QIAN X,HANG T,LI M,et al.Decoration of micro-nanoscale noble metal particles on 3d porous nickel using electrodeposition technique as electrocatalyst for hydrogen evolution reaction in alkaline electrolyte[J].ACS applied materials&Interface,2015,7:15716-15725.
    [14]KUO Y,LIAO W,YAU S.Effects of Anions on the electrodeposition of cobalt on pt(111)electrode[J].Langmuir,2014,30:13890-13897.
    [15]MALLIK M,MITRA A,SENGUPTA S,et al.Effect of current density on the nucleation and growth of crystal facets during pulse electrodeposition of Sn-Cu lead-free solder[J].Crystal Growth&Design,2014,14:6542-6549.
    [16]LIU Z,ABEDIN S Z E,BORISENKO N,et al.Influence of an additive on zinc electrodeposition in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate[J].Chemelectrochem,2015,2:1159-1163.
    [17]MATSUSHIMA H,BUND A,PLIETH W,et al.Copper electrodeposition in a magnetic field[J].Electrochimica Acta,2007,53:161-166.
    [18]OLVERA S,ESTRADA E M A.Effect of the low magnetic field on the electrodeposition of CoxNi100-xalloys[J].Materials Characterization,2015,105:136-143.
    [19]TUDELA I.Ultrasound-assisted electrodeposition of nickel:effect of ultrasonic power on the characteristics of thin coatings[J].Surface and Coatings Technology,2015,264:49-59.
    [20]BOOPATHI S,KUMAR S S.Impact of ultrasonic waves in direct electrodeposition of nanostructured aupt-alloy catalyst on carbon substrate:structural characterization and its superior electrocatalytic activity for methanol oxidation reaction[J].Journal of Physical Chemistry c,2014,118:29866-29873.
    [21]WANG M Y,WANG Z,GONG X Z,et al.The progress toward electrochemistry intensified by using supergravity field[J].Chemelectrochem,2015(2):1879-1887.
    [22]DU J P,SHAO G J,QIN X J.High specific surface area MnO2electrodeposited under supergravity field for supercapacitors and its electrochemical properties[J].Materials Letters,2012,84:13-15.
    [23]TONG H,KONG L B,WANG C M.Electroless deposition of Ag onto p-Si(100)surface under the condition of the centrifugal fields[J].Thin Solid Films,2006,496:360-363.
    [24]WANG M Y,WANG Z.The intensification technologies to water electrolysis for hydrogen production-A review[J].Renewable and Sustainable Energy Review,2014,29:573-588.
    [25]LAO L,RAMSHAW C,YEUNG H.Process intensification:water electrolysis in a centrifugal acceleration field[J].Journal of Applied Electrochemistry,2011,41:645-656.
    [26]WANG M Y,WANG Z,GUO Z C.Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection[J].Journal of Electroanalytical Chemistry,2015,744:25-31.
    [27]WANG M Y,WANG Z,GUO Z C.Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism[J].Transactions of Nonferrous Metals Society fo China,2010,20:1154-1160.
    [28]MORISUE M,FUKUNAKA Y.Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto at tin substrate[J].Journal of Electroanalytical Chemistry,2003,559:155-163.
    [29]LIU T,GUO Z C.Structure and corrosion resistance of nickel foils deposited in a vertical gravity field[J].Applied Surface Science,2010,256:6634-6640.
    [30]WANG M Y,WANG Z.Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction[J].International Journal of Hydrogen Energy,2015,40:2173-2181.
    [31]LIU T,GUO Z C,WANG Z,WANG M Y.Effects of gravity on the electrodeposition and characterization of nickel foils[J].International Journal of Minerals Metallurgy and Materials,2011,18:59-65.
    [32]CHEN Z H,MA Z P.Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution[J].Journal of Power Sources,2016,324:86-96.
    [33]CHEN J F.The application and technology of super gravity[M].Beijing:Chemical Industry Press,2002.
    [34]TONG H,KONG L B,WANG C M.Electroless deposition of Ag onto P-Si(100)surface under the condition of the centrifugal fields[J].Thin Solid Films,2006,496:360-363.
    [35]SATO M,YAMADA A,AOGAKI R.Electrochemical reaction in a high gravity field vertical to an electrode surface-analysis of diffusion process with a gravity electrode[J].Japanese Journal of Applied Physics,2003,42:4520-4528.
    [36]MOTI E,SHARIAT M H,BAHROLOLOOM M E.Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes[J].Materials chemistry and physics,2008,111:469-474.
    [37]KIUCHI D,MATSUSHIMA H.Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity[J].Journal of Electrochem Soc,2006,153:E138-E143.