混合交通流中协同式自适应车组引导车控制模型稳定性分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability analysis of lead-vehicle control model in cooperative adaptive cruise control platoon within heterogeneous traffic flow
  • 作者:顾海燕 ; 张健 ; 金璟 ; 冉斌
  • 英文作者:Gu Haiyan;Zhang Jian;Jin Peter J.;Ran Bin;School of Transportation, Southeast University;College of Transportation Science & Engineering, Nanjing Tech University;Department of Civil and Environmental Engineering, The State University of New Jersey;
  • 关键词:稳定性分析 ; 协同式自适应巡航车队 ; 引导车模型 ; 频域变换法
  • 英文关键词:stability analysis;;cooperative adaptive cruise control(CACC) platoon;;lead-vehicle model;;frequencydomain approach
  • 中文刊名:DNDY
  • 英文刊名:东南大学学报(英文版)
  • 机构:东南大学交通学院;南京工业大学交通运输工程学院;Department of Civil and Environmental Engineering, The State University of New Jersey;
  • 出版日期:2018-09-15
  • 出版单位:Journal of Southeast University(English Edition)
  • 年:2018
  • 期:v.34
  • 基金:The National High Technology Research and Development Program of China(863 Program)(No.2011AA110405)
  • 语种:英文;
  • 页:DNDY201803015
  • 页数:8
  • CN:03
  • ISSN:32-1325/N
  • 分类号:109-116
摘要
为了分析协同式自适应巡航控制(CACC)车组的稳定性影响,构建了混合交通流条件下协同式自适应巡航控制车辆组引导车模型(LCACC).考虑协同式自适应控制车组间的信息交互延误,采用频域变换的方法来推理引导车模型的稳定性边界条件.将美国NGSIM数据库轨迹数据作为初始输入,根据先前研究成果,采用IDM模型模拟混合交通流中人工驾驶车辆的驾驶行为,运用环道测试的方法来验证引导车模型的稳定性.环道测试结果表明,LCACC模型在改善协同式自适应车组的稳定性方面有一定的优越性,敏感性分析显示CACC车组的大小对LCACC模型参数产生影响.
        In order to analyze the stability impact of cooperative adaptive cruise control( CACC) platoon, an adaptive control model designed for the lead vehicle in a CACC platoon( LCACC model) in heterogeneous traffic flow with both CACC and manual vehicles is proposed.Considering the communication delay of a CACC platoon, a frequency-domain approach is taken to analyze the stability conditions of the novel lead-vehicle CACC model. Field trajectory data from the next-generation simulation( NGSIM)data is used as the initial condition. To account for carfollowing behaviors in reality, an intelligent driver model( IDM) is calibrated with the same NGSIM dataset from a previous study to model manual vehicles. The stability conditions of the proposed model are validated by the ringroad stability analysis. The ring-road test results indicate the potential of the LCACC model for improving the traffic flow stability impact of CACC platoons. Sensitivity analysis shows that the CACC fleet size has impact on the parameters of the LCACC model.
引文
[1] Darbha S,Rajagopal K R. Intelligent cruise control systems and traffic flow stability[J]. Transportation Research Part C:Emerging Technologies, 1999,7(6):329-352. DOI:10. 1016/S0968-090X(99)00024-8.
    [2] Pipes L A. An operational analysis of traffic dynamics[J]. Journal of Applied Physics, 1953, 24(3):274-281.DOI:10. 1063/1. 1721265.
    [3] Lakouari N, Bentaleb K, Ez-Zahraouy H, et al. Correlation velocities in heterogeneous bidirectional cellular automata traffic flow[J]. Physica A:Statistical Mechanics and Its Applications,2015,439:132-141. DOI:10. 1016/j. physa. 2015. 07. 024.
    [4] Li Y, Wang H, Wang W, et al. Evaluation of the impacts of cooperative adaptive cruise control onreducing rear-end collision risks on freeways[J]. School Accident Analysis and Prevention, 2017, 98:87-95. DOI:10.1016/j. aap. 2016. 09. 015.
    [5] Kesting A, Treiber M, Sch9nhof M, et al. Adaptive cruise control design for active congestion avoidance[J].Transportation Research Part C:Emerging Technologies,2008,16(6):668-683. DOI:10. 1016/j. trc. 2007. 12.004.
    [6] Liu F X, Cheng R J, Ge H X, et al. An improved carfollowing model considering the influence of optimal velocity for leading vehicle[J]. Nonlinear Dynamics, 2016,85(3):1469-1478. DOI:10. 1007/s11071-016-2772-7.
    [7] Zhou T,Sun D H,Kang Y R,et al. A new car-following model with consideration of the prevision driving behavior[J]. Communications in Nonlinear Science and Numerical Simulation,2014,19(10):3820-3826. DOI:10. 1016/j.cnsns. 2014. 03. 012.
    [8] van Arem B, van Driel C J G, Visser R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4):429-436. DOI:10. 1109/tits.2006. 884615.
    [9] Lidstr9m K, Sj9berg K, Holmberg U, et al. A modular CACC system integration and design[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3):1050-1061. DOI:10. 1109/tits. 2012. 2204877.
    [10] Milanés V, Shladover S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C,2014, 48:285-300. DOI:10. 1016/j. trc. 2014. 09. 001.
    [11] Yu S W, Shi Z K. An extended car-following model at signalized intersections[J]. Physica A:Statistical Mechanics and Its Applications, 2014, 407:152-159. DOI:10. 1016/j. physa. 2014. 03. 081.
    [12] Gu H Y, Jin P J, Wan X, et al. A leading vehicle model for comfortable acceleration among cooperative adaptive cruise control(CACC)vehicle platoons[C]//Transportation Research Board 94th Annual Meeting. Washington,DC, USA, 2014:5215-5232.
    [13] Darbha S,Rajagopal K R. Intelligent cruise control systems and traffic flow stability[J]. Transportation Research Part C:Emerging Technologies,1999,7(6):329-352. DOI:10. 1016/S0968-090X(99)00024-8.
    [14] van Arem B, de Vos A P, Vanderschuren M. The microscopic traffic simulation model MIXIC 1. 3[R]. Washington,DC, USA:TRID, 1997.
    [15] Hua X D, Wang W, Wang H. A car-following model with the consideration of vehicle-to-vehicle communication technology[J]. Acta Physica Sinica, 2016, 65(1):010502-1-010502-12.
    [16] Zheng L. Detailed string stability analysis for bi-directional optimal velocity model[J]. Journal of Central South University, 2015, 22(4):1563-1573. DOI:10. 1007/s11771-015-2673-9.
    [17] Naus G J L, Vugts R P A, Ploeg J, et al. String-stable CACC design and experimental validation:A frequencydomain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9):4268-4279. DOI:10. 1109/tvt. 2010. 2076320.
    [18] Guo G, Yue W. Autonomous platoon control allowing range-limited sensors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7):2901-2912. DOI:10. 1109/tvt. 2012. 2203362.
    [19] Seiler P, Pant A, Hedrick K. Disturbance propagation in vehicle strings[J]. IEEE Transactions on Automatic Control,2004, 49(10):1835-1841. DOI:10. 1109/tac.2004. 835586.
    [20] Shaw E, Hedrick J K. Controller design for string-stable heteroge-neous vehicle strings[C]//46th IEEE Conference on Decision and Control. New Orleans, LA, USA,2008:2868-2875. DOI:10. 1109/CDC. 2007. 4435011.
    [21] Kianfar R, Augusto B, Ebadighajari A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3):994-1007. DOI:10. 1109/tits. 2012. 2186513.
    [22] Naus G, Vugts R, Ploeg J, et al. Towards on-the-road implementation of cooperative adaptive cruise control[C]//16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services. Stockholm, Sweden,2009, 58(8):6145-6150.
    [23] Ngoduy D. Analytical studies on the instabilities of heterogeneous intelligent traffic flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(10):2699-2706. DOI:10. 1016/j. cnsns. 2013. 02. 018.
    [24] Orosz G, Wilson R E,Stépán G. Traffic jams:Dynamics and control[J]. Philosophical Transactions of the Royal Society A:Mathematical Physical&Engineering Sciences,2010, 368(1928):4455-4479.
    [25] Shladover S, Vanderwerf J, Miller M A, et al. Development and performance evaluation of AVCSS deployment sequences to advance from today's driving environment to full automation[J]. Inorganic Chemistry, 2001, 46(1):93-102.
    [26] Treiber M, Hennecke A, Helbing D. Congested trafc states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2):1805-1824.DOI:10. 1103/physreve. 62. 1805.
    [27] Sheikholeslam S, Desoer C A. Longitudinal control of a platoon of vehicles with no communication of lead vehicle information:A system level study[J]. IEEE Transactions on Vehicular Technology, 1993, 42(4):546-554. DOI:10. 1109/25. 260756.
    [28] Liang C Y, Peng H. String stability analysis of adaptive cruise controlled vehicles[J]. JSME International Journal Series C, 2000, 43(3):671-677. DOI:10. 1299/jsmec.43. 671.