往复泵水头损失及空化现象的数值仿真优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation Optimization of Head Loss and Cavitation for Reciprocating Pump
  • 作者:马良丰 ; 冯进 ; 刘宇 ; 魏俊 ; 刘倩倩
  • 英文作者:MA Liang-feng;FENG Jin;LIU Yu;WEI Jun;LIU Qian-qian;School of Mechanical Engineering, Yangtze University;
  • 关键词:往复泵 ; 水头损失 ; 空化 ; 魏斯特法尔现象 ; 动网格技术 ; 优化
  • 英文关键词:reciprocating pump;;head loss;;cavitation;;Weisitert phenomenon;;dynamic grid technique;;optimization
  • 中文刊名:YYYQ
  • 英文刊名:Chinese Hydraulics & Pneumatics
  • 机构:长江大学机械工程学院;
  • 出版日期:2019-03-15
  • 出版单位:液压与气动
  • 年:2019
  • 期:No.331
  • 语种:中文;
  • 页:YYYQ201903025
  • 页数:6
  • CN:03
  • ISSN:11-2059/TH
  • 分类号:135-140
摘要
为减轻往复泵的水头损失及空化现象,以提高吸入性能,根据魏斯特法尔理论分析了泵阀运动特性,基于阀盘结构和活塞冲次等参量,提出了水头损失和空化量的优化模型。采用Fluent动网格技术进行动态数值模拟,分析了各参量对吸入过程水头损失和空化现象的影响及其发展过程,优选出了最佳阀盘结构参数和活塞冲次,可有效减小液缸内的水头损失,降低因阀盘开启滞后而产生的空化现象,改善泵的吸入性能和汽蚀现象。得出了往复泵吸入过程水头损失最小、活塞端面的空化量最小时的阀盘锥角及最优的工作冲次,为往复泵的吸入特性研究提供了参考依据。
        In order to reduce head loss and cavitation of reciprocating pump and improve suction performance, motion characteristics of pump valve are analyzed according to the Westphal theory. Based on the parameters of valve disc structure and piston stroke, an optimization model of head loss and cavitation is proposed. By the Fluent dynamic mesh technology, a dynamic numerical simulation of the model is performed. The influence of various parameters on head loss and cavitation during suction process and its development process is analyzed, and the optimal valve structure parameters and piston stroke are optimized. A utility model can effectively reduce the head loss in a liquid cylinder, reducing the cavitation which is caused by opening delay of valve plate, and improving the suction performance and the cavitation phenomenon of the pump. The minimum head loss in the suction process of reciprocating pump, the valve disc cone of the minimum cavitation of piston end and the best working stroke are obtained, which provide a reference for study of suction characteristics of reciprocating pumps.
引文
[1] 常亮,朱春雨,刘兴刚,等.国内外往复泵的研发现状及发展趋势[J].石化技术,2016,(12):183-184. CHANG Liang, ZHU Chunyu, LIU Xinggang, et al. Development Status and Development Trend of Reciprocating Pumps at Home and Abroad [J]. Petrochemical Industry Technology, 2016,(12):183-184.
    [2] 宋启策,赵伟国,杨军虎,等.泵空化现象的研究综述[J].机械制造,2014,52(9):1-5. SONG Qice, ZHAO Weiguo, YANG Junhu, et al. Review of Cavitation in Pumps [J]. Mechanical Manufacture, 2014,52(9):1-5.
    [3] 董敏,李想,夏晨亮,等.基于AMESim液压隔膜计量泵阀滞后因素及影响的研究[J].液压与气动,2017,(12):76-81. DONG Min, LI Xiang, XIA Chenliang, et al. Study on Lag Factor and Influence of Hydraulic Diaphragm Metering Pump Valve Based on AMESim [J]. Chinese Hydraulics & Pneumatics, 2017,(12):76-81.
    [4] 尹杰,张建敏,张远深,等.基于AMESim的负载敏感轴向柱塞泵的动态特性分析[J].液压与气动,2014,(7):107-110. YIN Jie, ZHANG Jianmin, ZHANG Yuanshen, et al. Dynamic Characteristic Analysis of Load Sensitive Axial Piston Pump Based on AMESim [J]. Chinese Hydraulics & Pneumatics, 2014,(7):107-110.
    [5] 闫国军,赵军明,董泳.往复泵阀运动规律的研究[J].中国机械工程,2004,15(18):1617-1619. YAN Guojun, ZHAO Junming, DONG Yong. Study on Movement Rule of Reciprocating Pump Valve [J]. China Mechanical Engineering, 2004,15(18):1617-1619.
    [6] JOHN V, JAN V, ERIK V, et al. Flow Simulations in Rotary Volumetric Pumps and Compressors with the Fictitious Domain Method [J]. Journal of Computational and Applied Mathematics, 2004,168:491-499.
    [7] ROGER Y. CFD Simulation of Oil Flow and Flow Induced Forces Inside Hydraulic Valves [J]. National Fluid Power Association and Society of Automotive Engineers, 2002:201-207.
    [8] YASHINARI N, SEIICHI W, KOYA S. Mea-surement and Modeling of Poppet Valve Characteristics [C]. 日本机械学会论文集C编, 2002,68(4):67-72.
    [9] PRIYATOSH B. Computational Fluid Dynamics (CFD) Analysis to Predict and Control the Cavitation Erosion in a Hydraulic Control Valve [C]. SAE 2002 World Congress. Detroit, Michigan,USA,1-5.
    [10] 高希彦,王燕,方武.数值仿真在泵阀参数优化中的应用[J].排灌机械工程学报,2010,28(1):63-67. GAO Xiyan, WANG Yan, FANG Wu. Application of Numerical Simulation in Optimization of Pump Valve Parameters [J]. Journal of Drainage and Irrigation Engineering, 2010,28(1):63-67.
    [11] 莫丽,王晓兵,王军.基于CFD的压裂泵泵阀结构特性分析[J].机械设计,2015,32(6):75-78. MO Li, WANG Xiaobing, WANG Jun. Structural Characteristics Analysis of Fracturing Pump Valve Based on CFD [J]. Machine Design, 2015,32(6):75-78.
    [12] 张慢来,廖锐全,冯进.往复泵吸入特性的流体力学数值模拟[J].农业工程学报,2010,26(Supp.2):242-247. ZHANG Manlai, LIAO Ruiquan, FENG Jin. Hydrodynamic Numerical Simulation of Suction Characteristics of Reciprocating Pumps [J]. Journal of Agricultural Engineering, 2010,26(Supp.2):242-247.
    [13] 郑淑娟,权龙,陈青.阀芯运动过程液压锥阀流场的CFD计算与分析[J].农业机械学报,2007,38(1):168-172. ZHENG Shujuan, QUAN Long, CHEN Qing. CFD Calculation and Analysis of Flow Field of Hydraulic Cone Valve During Spool Movement [J]. Journal of Agricultural Machinery, 2007,38(1):168-172.
    [14] MIRKO C, JURIJ P. Detection of Cavitation in Situ Operation of Kinetic Pumps: Effect of Cavitation on the Characteristic Discrete Frequency Component [J]. Applied Acoustics, 2009,70(9):1175-1182.
    [15] 华东石油学院编译.石油矿场往复泵-国外近斯发展综述[M].兰州:石油机械研究所,1975:142-163. Summary of Development of Reciprocating Pump in Petroleum Field of East China Petroleum University [M]. Lanzhou: Petroleum Machinery Research Institute, 1975:142-163.
    [16] 王晓兵.压裂泵泵阀失效机理研究及有限元分析[D].成都:西南石油大学,2016:9-18. WANG Xiaobing. Failure Mechanism Study and Finite Element Analysis of Fracturing Pump Valve [D]. Chengdu: Southwest Petroleum University, 2016:9-18.
    [17] 周加龙.3NB130型钻井泵泵阀的研究[D].兰州:兰州理工大学,2011:8-16. ZHOU Jialong. Research on 3NB130 Type Drilling Pump Valve [D]. Lanzhou: Lanzhou University of Technology, 2011:8-16.
    [18] 齐清兰,霍倩.流体力学[M].北京:中国水利水电出版社,2012:73-105. QI Qinglan, HUO Qian. Fluid Mechanics [M]. Beijing: China Water Conservancy and Hydropower Press, 2012:73-105.
    [19] 马富银,杨国平,吴伟蔚.泵的空化现象研究进展[J].流体机械,2011,39(4):30-34. MA Fuyin, YANG Guoping, WU Weiwei. Research Progress of Cavitation in Pumps [J]. Fluid Machinery, 2011,39(4):30-34.