建筑Al-Mn-Er-Zr合金屋面板的热变形行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on thermal deformation behavior of building Al-Mn-Er-Zr alloy for roof panels
  • 作者:陈星星 ; 寇林园
  • 英文作者:CHEN Xing-xing;KOU Lin-yuan;School of Urban Construction,Yangtze University;College of Materials Science and Engineering,Hunan University;
  • 关键词:Al-Mn-Er-Zr合金 ; 高温压缩 ; 微观组织 ; 本构方程 ; 温升修正
  • 英文关键词:Al-Mn-Er-Zr alloy;;high temperature compression;;microstructure;;constitutive equation;;temperature rise correction
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:长江大学城市建设学院;湖南大学材料科学与工程学院;
  • 出版日期:2019-04-25 17:27
  • 出版单位:塑性工程学报
  • 年:2019
  • 期:v.26;No.135
  • 基金:湖北省教育厅中青年人才项目(Q20171312)
  • 语种:中文;
  • 页:SXGC201902026
  • 页数:8
  • CN:02
  • ISSN:11-3449/TG
  • 分类号:191-198
摘要
在Gleeble 3500热模拟试验机上,对半连续铸造Al-Mn-Er-Zr合金棒坯进行变形温度350~500℃、应变速率0. 01~10 s-1的高温压缩试验,建立了高温热变形稳态流变方程,并对流变曲线进行了温升修正。结果表明,在相同应变速率下,变形温度的升高会使Al-Mn-Er-Zr合金更容易发生动态再结晶;在相同变形温度下,随着应变速率的增大,Al-Mn-Er-Zr合金中流线组织逐渐粗化,锯齿化程度增大,动态再结晶晶粒有所细化。进行了Al-Mn-Er-Zr合金的应力-应变本构方程建立与求解,得出了在变形温度350~500℃、应变速率0. 01~10 s-1时的高温变形稳态流变方程;高温压缩过程中由温升造成的计算应力与实测应力的误差在10%以内,高温热变形稳态流变方程能够较好的表征Al-Mn-Er-Zr合金的高温流变行为。
        High temperature compression tests of semi-continuous casting Al-Mn-Er-Zr alloy bars with deformation temperature of 350-550 ℃ and strain rate of 0. 01-10 s-1 were carried out on Gleeble 3500 thermal simulator. The steady state rheological equations of high temperature thermal deformation were established and the rheological curves were modified by temperature rise. The results show that at the same strain rate,the dynamic recrystallization of Al-Mn-Er-Zr alloy is more easier to occur with the increase of deformation temperature. At the same deformation temperature,the streamline structure of Al-Mn-Er-Zr alloy coarsens gradually,the degree of sawtooth increases,and the grain size of dynamic recrystallization refines with the increase of strain rate. The stress-strain constitutive equation of AlMn-Er-Zr alloy was established and solved,the steady state rheological equation of Al-Mn-Er-Zr alloy for high temperature was obtained at the deformation temperature of 350-500 ℃ and strain rate of 0. 01-10 s-1. The error between calculated stress and measured stress caused by temperature rise during thermal compression of Al-Mn-Er-Zr alloy is less than 10%,and the steady state rheological equation of high temperature thermal deformation can well describe the thermal rheological behavior of Al-Mn-Er-Zr alloy.
引文
[1]赖笑,沈冠豪,刘超.装配式Al-Mn合金屋面板的累积叠轧工艺与组织性能研究[J].热加工工艺,2018,47(11):120-123,127.LAI Xiao,SHEN Guanhao,LIU Chao. Study on cumulative rolling process and microstructure and properties of assembled Al-Mn alloy roof[J]. Hot Working Technology,2018, 47(11):120-123,127.
    [2]张璞.形变热处理对屋面用Al-Mn合金板再结晶行为的影响[J].热加工工艺,2018,47(8):138-142,145.ZHANG Pu. Effect of thermomechanical treatment on recrystallization behavior of Al-Mn alloy sheets for roofing[J]. Hot Working Technology,2018,47(8):138-142,145.
    [3]吴浩,文胜平,卢军太,等.新型Er、Zr微合金化Al-Zn-MgCu合金在均匀化中的显微组织演变[J].中国有色金属学报,2017,27(7):1476-1482.WU Hao,WEN Shengping,LU Juntai,et al. Microstructure evolution of new Er and Zr microalloyed Al-Zn-Mg-Cu alloys during homogenization[J]. Chinese Journal of Nonferrous Metals,2017,27(7):1476-1482.
    [4]林双平,黄晖,文胜平,等.含Er 5083合金均匀化退火过程中Al3Er相的TEM观察[J].金属学报,2009,45(8):978-982.LIN Shuangping,HUANG Hui,WEN Shengping,et al. TEM observation of Al3Er phase in homogenized annealing process of alloy containing Er 5083[J]. Acta Metallurgica Sinica,2009,45(8):978-982.
    [5] CHEN G Q,FU G S,YAN W D,et al. Development of processing maps for 3003 Al alloy[J]. Advanced Materials Research,2011,291-294:306-310.
    [6]齐永杰,吕航鹰,余新平,等. 2D70铝合金热变形动态组织演变及模型研究[J].特种铸造及有色合金,2018,38(9):1023-1027.QI Yongjie,LHangying,YU Xinping,et al. Dynamic microstructure evolution and modeling of 2D70 aluminum alloy during hot deformation[J]. Special Casting and Nonferrous Alloy,2018,38(9):1023-1027.
    [7] CHEN G,GUO F,LIN S,et al. Simulation of flow of aluminum alloy 3003 under hot compressive deformation[J]. Metal Science&Heat Treatment,2013,54(11-12):623-627.
    [8] LI L T,LIN Y C,LI L,et al. Three-dimensional crystal plasticity finite element simulation of hot compressive deformation behaviors of 7075 Al alloy[J]. Journal of Materials Engineering and Performance,2015,24(3):1294-1304.
    [9] XIAO Z,ZHENG R,LI H,et al. Hot deformation behavior of3003/4004 two-layered aluminum alloy[J]. Rare Metal Materials and Engineering,2016,45(10):2529-2533.
    [10] LIN Q,DONG W,LI Y,et al. Microstructure simulation of 2519aluminum alloy in multi-pass hot compression process[J]. Procedia Engineering,2014,81:1259-1264.
    [11] YANG Y B,ZHANG Z M,ZHANG X. Hot deformation and processing map of C919 aluminum alloy[J]. Materials Science Forum,2015,816:810-817.
    [12]刘贤翠,潘冶,唐智骄,等. Al-Mn系合金的组织控制与高温性能研究[J].金属学报,2017,53(11):1487-1494.LIU Xiancui,PAN Ye,TANG Zhijiao,et al. Microstructure control and thermal properties of Al-Mn alloys[J]. Acta Metallurgica,2017,53(11):1487-1494.
    [13] ZHANG H,WU H J,JIANG F L. Hot deformation behavior and processing map of 4045 aluminum alloy[J]. Journal of Hunan University,2013,40(8):83-89.
    [14] FU G S,Chen G Q. Hot deformation mechanism and processing maps of 3003 aluminum alloy[J]. Transactions of Materials&Heat Treatment,2013,34(2):114-119.
    [15] GUO W G,ZHANG X Q,SU J,et al. The characteristics of plastic flow and a physically-based model for 3003 Al-Mn alloy upon a wide range of strain rates and temperatures[J]. European Journal of Mechanics-A/Solids,2011,30(1):54-62.
    [16]徐杰,肖铁忠,黄娟. TC18钛合金等高温压缩过程的组织性能[J].锻压技术,2017,42(1):111-115.XU Jie,XIAO Tiezhong,HUANG Juan. Microstructure and properties of isothermal high-temperature compression process for titanium alloy TC18[J]. Forging&Stamping Technology,2017,42(1):111-115.
    [17] XIAO Z,ZHENG R,HU L,et al. Hot deformation behavior of3003/4004 two-layered aluminum alloy[J]. Rare Metal Materials&Engineering,2016,45(10):2529-2533.
    [18] CHEN G,FU G,CHENG C,et al. Optimization of a hot deformation process of the 3003 aluminum alloy by processing maps[J].Metals&Materials International,2012,18(5):813-819.
    [16]陈贵清,傅高升,王军德,等.考虑不同应变的3003铝合金流变应力预测模型建立与验证[J].塑性工程学报,2018,25(2):265-271.CHEN Guiqing,FU G S,WANG Junde,et al. Establishment and validation of flow stress prediction model for 3003 aluminum alloy considering different strains[J]. Journal of Plasticity Engineering,2018,25(2):265-271.
    [17] CHEN G Q,FU G S,CHENG C Z. Effects of hot deformation parameters on microstructures and hardness of 3003 aluminum alloys[J]. Materials Science&Technology,2012,20(5):116-120.
    [18]张彦敏,陈赛,葛学元,等. 6082铝合金热变形行为及热加工图[J].塑性工程学报,2018,25(4):113-121.ZHANG Yanmin,CHEN Sai,GE Xueyuan,et al. Hot deformation behavior and hot working diagram of 6082 aluminum alloy[J]. Journal of Plasticity Engineering,2018,25(4):113-121.
    [19] RYEN,HOLMEDAL B,NES E. Characterisation and modelling of work hardening in Al-Mg and Al-Mn alloys[J]. Materials Science Forum,2002,396-402:6-9.
    [20] HE L Z,LI X H,LIU X T,et al. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy[J]. Materials Science&Engineering A,2010,527(29):7510-7518.
    [21] WU H,WEN S P,HUANG H,et al. Effects of homogenization on precipitation of Al3(Er,Zr)particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science&Engineering A,2017,689:313-322.