硅基复合相变材料热物性及修饰基团作用机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermophysical Properties and Modified Groups Mechanism of Silicon-based Composite Phase Change Materials
  • 作者:王琛 ; 冯妍卉 ; 冯黛丽 ; 王戈 ; 张欣欣
  • 英文作者:WANG Chen;FENG Yan-Hui;FENG Dai-Li;WANG Ge;ZHANG Xin-Xin;School of Energy and Environmental Engineering, University of Science and Technology Beijing;Beijing Changfeng Xinlian Engineering Management Co.Ltd;Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing;School of Materials Science and Engineering, University of Science and Technology Beijing;
  • 关键词:聚乙二醇 ; MCM-41 ; 定形相变材料 ; 分子动力学 ; 热特性
  • 英文关键词:polyethylene glycol;;MCM-41;;Shape-stabilized phase change material;;molecular dynamics;;thermal properties
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:北京科技大学能源与环境工程学院;北京长峰新联工程管理有限责任公司;北京科技大学冶金工业节能减排北京市重点实验室;北京科技大学材料科学与工程学院;
  • 出版日期:2019-05-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(No.51606008,No.51876007,No.51436001);; 北京市自然科学基金(No.3192022)
  • 语种:中文;
  • 页:GCRB201905030
  • 页数:8
  • CN:05
  • ISSN:11-2091/O4
  • 分类号:222-229
摘要
本文以聚乙二醇为相变材料,介孔分子筛MCM-41为载体,对孔道内表面进行氨基修饰,制备了PEG/MCM-41复合相变材料.利用FT-IR、DSC以及3-Omega对材料进行了结构表征与测量.实验表明,PEG/MCM-41-OH没有发生相变,而PEG/MCM-41-NH2熔点略低于PEG,潜热随着芯材负载量增大而增加;PEG/MCM-41热导率高于基材但低于两者之和.对测量结果及规律进行机理研究,原子位置分布图、相互作用能及原子对径向分布函数表明,羟基比氨基对芯材作用力更强,束缚芯材在孔道内部运动,进而影响材料蓄热能力;振动态密度和重叠能表明,孔道内PEG原子间传热受阻,热导率下降,而MCM-41传热没有受到影响.
        In this paper, PEG/MCM-41 composite phase change material was prepared by using polyethylene glycol as phase change material and mesoporous molecular sieve MCM-41 as carrier to modify the inner surface of channel. The materials were characterized and measured by FT-IR, DSC and 3-Omega. The experimental results showed that there was no phase change in PEG/MCM-41-OH,while the melting point of PEG/MCM-41-NH2 was slightly lower than that of PEG. The latent heat increased with the increase of core loading, and the thermal conductivity of PEG/MCM-41 was higher than that of substrate, but lower than that of the two. Mechanism research on the measurement results and regularity of distribution map, atomic interaction energy and atom pair radial distribution functions showed that the hydroxyl had stronger force on the core material than that of amino, and then tied the core material in the internal movement of channels, thereby affecting the material storage capacity; The vibrational density of states and overlap indicated that the heat transfer between PEG atoms in the channel was blocked and the thermal conductivity decreased, while the heat transfer of MCM-41 was unaffected.
引文
[1]王毅,夏天东,冯辉霞.有机相变储热材料的研究进展[J].材料导报A:综述篇,2011,25(2):66-74Wang Yi, Xia Tiandong, Feng Huixia. Research and Development of Heat Storage Using Organic Phase Change Materials[J]. Materials. Review, 2011, 25(2):66-74
    [2] WU Dang, WEN Wen, CHEN Sheng, et al. Preparation and Properties of a Novel Form-Stable Phase Change Material Based on a Gelator[J]. Journal of Materials Chemistry A, 2015, 3(6):2589-2600
    [3] Radhakrishnan R, Gubbins K E, Watanabe A, et al.Freezing of Simple Fluids in Microporous Activated Carbon Fibers:Comparison of Simulation and Experiment[J]. The Journal of Chemical physics, 1999, 111(19):9058-9067
    [4] FENG Lili, ZHAO Wei, ZHENG Jie, et al.The Shape-Stabilized Phase Change Materials Composed of Polyethylene Glycol and Various Mesoporous Matrices(AC,SBA-15 and MCM-41)[J]. Solar Energy Materials&Solar Cells, 2011, 95(12):3550-3556
    [5] WANG Chongyun, WANG Wei, XIN Gongbiao, et al.Phase change behaviors of PEG on modified graphene oxide mediated by surface functional groups[J]. European Polymer Journal, 2016, 74:43-50
    [6]方玉堂,康慧英,张正国.聚乙二醇相变储能材料研究进展[J].化工进展,2007, 26(8):1063-1067Fang Yutang, Kang Huiying, Zhang Zhengguo, Gao Xuenong. Review of polyethylene glycol for energy storage[J]. Chemical Industry and Engineering Progress, 2007,26(8):1063-1067
    [7] HUANG Xinbing, YANG Mu, WANG Ge, et al. Effect of surface properties of SBA-15 in confined Ag nanomaterials via double solvent technique[J]. Microporous and Mesoporous Materials, 2011, 144(1):171-175
    [8] Hardy BJ,SarkoA. Conformational Analysis and Molecular Ddynamics Simulation of Cellobiose and Larger Cellooligomers[J]. Journal of Computational Chemistry,1993, 14(7):831-847
    [9] SUN Huai, MumbySJ, MapleJR, et al. An ab Initio CFF93 All-Atom Force Field for Polycarbonates[J]. Am Chem Soc, 1994, 116(7):2978-2987
    [10]顾明,王建立,张兴.用改良3-Omega方法测量聚合物的热导率[J].工程热物理学报,2009, 30(3):450-452Gu Ming, Wang Jianli, Zhang Xing. Thermal Conductivity measurement of polymers with an improved 3ωmethod[J]. Journal of Engineering Thermophysics, 2009,30(3):450-452
    [11]郑兴华.微纳热功能粉体材料传热及蓄热特性研究[D].北京:中国科学院,2012Zheng Xinghua. Study on Heat Transportation and Heat Storage Properties of Micro/nano-scale Thermal Functional Powders[D]. Beijing:Chinese Academy of Sciences,2012
    [12] Lide D R. CRC Handbook of Chemistry and Physics[M].81st ed. Boca Raton:CRC Press, 2000:6-17
    [13] YANG Mingjun, StippSLS, Harding J. Biological Control on Calcite Crystallizationby Polysaccharides[J]. Cryst Growth Des, 2008, 8(11):4066-4074
    [14] Huang B L, McGaughey A J H, Kaviany M. Thermal Con-ductivity of Metal-Organic Framework(MOF-5):Part 1Molecular Dynamics Simulations[J]. Heat Mass Transfer,2007, 50(3):393-404
    [15] Loong C K, Vashishta P, Kalia R K, et al. Phonon Density of States and Oxygen-Isotope Effect in Ba_(1-x)K_xBiO_3[J].Phys Rev B, 1992, 45(14):8052-8064
    [16] ZHANG Xiaoliang, JIANG Jianwen. Thermal Conductivity of Zeolitic Imidazolate Framework-8:a Simulation Study[J]. Phys Chem C, 2013, 117(36):18441-18447