流动电极电吸附(FCDI)与电渗析(ED)耦合实现连续脱盐技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Technical research in continuous desalting by coupling flow capacitive deionization and electrodialysis
  • 作者:莫恒亮 ; 唐阳 ; 陈咏梅 ; 万平玉
  • 英文作者:MO Heng-liang;TANG Yang;CHEN Yong-mei;WAN Ping-yu;National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis,Institute of Electrochemical Engineering,Beijing University of Chemical Technology;
  • 关键词:流动电极电吸附 ; 电渗析 ; 脱盐 ; 高水效 ; 流动电极再生
  • 英文关键词:flow capacitive deionization;;electrodialysis;;desalting;;high water recovery;;regeneration of flow electrode
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:国家新危险化学品评估及事故鉴定基础研究实验室北京化工大学电化学研究所;
  • 出版日期:2019-03-29 08:51
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.391
  • 基金:国家自然科学基金(51374016);; 北京市自然科学基金(2182046)
  • 语种:中文;
  • 页:XDHG201905021
  • 页数:5
  • CN:05
  • ISSN:11-2172/TQ
  • 分类号:97-101
摘要
在利用流动电极电吸附(FCDI)进行脱盐处理的同时以电渗析(ED)作为流动电极的再生单元,2个过程耦合可实现盐水的连续稳定脱盐。研究结果表明,FCDI的脱盐率随电压的增加而增大,随着盐水总流量的增加而减小;在优化条件下,FCDI的脱盐率达95%,水效为95%。当FCDI采用连续工作模式而ED采用间歇式工作时,可充分发挥前者脱盐能耗低、水效高以及后者对于流动电极脱盐速率大及体积小的优势。FCDI+ED耦合技术解决了FCDI技术中流动电极的再生效率低、再生不稳定及设备体积大的问题。
        Continuous stable desalting process for saline water can be realized by using flow capacitive deionization(FCDI) to perform desalination while using electrodialysis(ED) as the regeneration unit for flow electrode.Studies show that the desalination rate by FCDI increases with the increase of voltage,but decreases with the increase of the total flow of saline water.Under optimized conditions by FCDI,the desalination rate can reach 95% and the recovery rate of water can reach 95%.When FCDI works in a continuous mode while ED works in an intermittent mode,the coupling process can give full play to FCDI's advantages in low energy consumption of desalination and high recovery rate of water,and also give full play to ED's advantages in high desalting speed and small equipment size. The FCDI + ED coupling technology can solve the problems such as low efficiency of regeneration,instable regeneration and bulky equipment for the regeneration flow electrode in FCDI.
引文
[1]Porada S,Zhao R,Van der wal A,et al.Review on the science and technology of water desalination by capacitive deionization[J].Progress in Materials Science,2013,58:1388-1442.
    [2]Suss M E,Porada S,Sun X,et al.Water desalination via capacitive deionization:What is it and what can we expect from it?[J].Energy&Environmental Science,2015,8(8):2296-2319.
    [3]Lee J B,Park K K,Eum H M,et al.Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination,2006,196(1/2/3):125-134.
    [4]Biesheuvel P M,Van der wal A.Membrane capacitive deionization[J].Journal of Membrane Science,2010,346:256-262.
    [5]Lee J H,Choi J H.The production of ultrapure water by membrane capacitive deionization(MCDI)technology[J]. Journal of Membrane Science,2012,s409-410(8):251-256.
    [6]Jeon S,Park H,Yeo J,et al.Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J].Energy&Environmental Science,2013,6(5):1471-1475.
    [7]杨宏艳,张卫珂,葛坤,等.流动性电极电容去离子技术的脱盐性能研究[J].环境污染与防治,2017,8:911-915.
    [8]Yang S C,Choi J,Yeo J G,et al.Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J].Environmental Science&Technology,2016,50(11):5892-5899.
    [9]Kim T,Yu J,Kim C,et al. Hydrogen peroxide generation in flowmode capacitive deionization[J].Journal of Electroanalytical Chemistry,2016,776:101-104.
    [10]Yang S C,Kim H,Jeon S,et al. Analysis of the desalting performance of flow-electrode capacitive deionization under shortcircuited closed cycle operation[J]. Desalination,2017,424:110-121.
    [11]Hatzell K B,Hatzell M C,Cook K M,et al.The effect of oxidation of carbon material on suspension electrodes for flow-electrode capacitive deionization[J]. Environmental Science&Technology,2015,49(5):3040-3047.
    [12]Zhang C Y,He D,Ma J X,et al. Faradaic reactions in capacitive deionization(CDI)-problems and possibilities:A review[J].Water Research,2018,128:314-330.
    [13]Nativ P,Badash Y,Gendel Y.New insights into the mechanism of flow-electrode capacitive deionization[J].Electrochemistry Communications,2017,76:24-28.
    [14]Rommerskirchen A,Gendel Y,Wessling M,et al. Single module flow-electrode capacitive deionization for continuous water desalination[J].Electrochemistry Communications,2015,60:34-37.
    [15]Rommerskirchen A,Ohs B,Arturo K,et al. Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes[J].Journal of Membrane Science,2018,546:188-196.
    [16]Porada S,Weingarth D,Hamelers H V M,et al.Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation[J]. Journal of Materials Chemistry A,2014,2(24):9313-9321.
    [17]Jande Y A C,Kim W S.Modeling the capacitive deionization batch mode operation for desalination[J].Journal of Industrial and Engineering Chemistry,2014,20(5):3356-3360.
    [18]Gendel Y,Rommerskirchen A,David O,et al.Batch mode and continuous desalination of water using flowing carbon deionization(FCDI)technology[J]. Electrochemistry Communications,2014,46:152-156.
    [19]Doornbuschab G J,Dykstrabc J E,Biesheuvelbd P M,et al.Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J].Journal of Materials Chemistry A,2016,4(10):3642-3647.
    [20]Bouhidel K E, Oulmi K. Concentration polarization in electrodialysis:Buffer solutions experimental method[J]. Desalination,2000,132(1-3):199-204.