活性炭纤维耦合柠檬酸铁在中性pH条件下活化双氧水降解染料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Activation of Hydrogen Peroxide by Activated Carbon Fibers Coupled with Fe(Ⅲ)–Citrate for Degradation of Dyes at Neutral pH
  • 作者:王列 ; 姚玉元 ; 孙利杰 ; 吕汪洋 ; 陈文兴
  • 英文作者:Wang, Lie;Yao, Yuyuan;Sun, Lijie;Lü, Wangyang;Chen, Wenxing;Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University;
  • 关键词:活性炭纤维 ; 柠檬酸铁 ; 类芬顿 ; 催化纤维 ; 染料
  • 英文关键词:activated carbon fibers;;ferric citrate;;Fenton-like;;catalytic fibers;;dyes
  • 中文刊名:HXXB
  • 英文刊名:Acta Chimica Sinica
  • 机构:浙江理工大学先进纺织材料与制备技术教育部重点实验室;
  • 出版日期:2013-12-15
  • 出版单位:化学学报
  • 年:2013
  • 期:v.71
  • 基金:国家自然科学重点基金(No.51133006);; 国家自然科学基金(Nos.51003096,51103133);; 浙江理工大学科学基金(No.1001803-Y);; 纺织之光科技教育基金资助~~
  • 语种:中文;
  • 页:HXXB201312009
  • 页数:6
  • CN:12
  • ISSN:31-1320/O6
  • 分类号:69-74
摘要
在环境催化领域,开发pH适应范围广的类芬顿催化剂一直是活跃而极具挑战性的研究课题.采用活性炭纤维耦合柠檬酸铁制得耐pH的类芬顿催化纤维(Cit-Fe@ACFs),在pH值2~10的范围内Cit-Fe@ACFs均表现出优异的催化性能,有效拓宽了传统芬顿反应的pH适应范围;Cit-Fe@ACFs在中性条件下能快速活化H2O2催化降解活性染料、酸性染料、碱性染料等多种染料,并具有良好的重复使用性.采用探针化合物正丁醇、苯醌,结合电子顺磁共振波谱(EPR)证明了Cit-Fe@ACFs/H2O2催化体系中的氧化活性种主要为羟基自由基(OH)和超氧自由基(HO2),推测了其催化反应机理.
        The development of a pH-tolerant Fenton-like catalyst is a active and challenging project in the field of environmental catalysis. In this work, an efficient Fenton-like catalytic fibers(Cit-Fe@ACFs) with pH-tolerance has been prepared by an extremely simple impregnation method. First, activated carbon fibers(ACFs) were impregnated into a nitric acid solution at 25 ℃ for 24 h to obtain acidified ACFs, and then immersed in a sodium citrate solution at 25 ℃ for 2 h, which was taken out to put into ferric chloride solution at 25 ℃ for 2 h. The treated ACFs were rinsed with distilled water and dried at room temperature to obtain the Cit-Fe@ACFs. Cit-Fe@ACFs exhibited efficient catalytic activity for the activation of hydrogen peroxide at neutral pH to degrade dyes, including reactive, acid, and basic dyes, etc. The UV-vis spectroscopy showed that reactive brilliant red M-3BE(RR M-3BE) was eliminated completely in 15 min(Cit-Fe@ACFs: 12 g/L; H2 O2 : 60 mmol/L; RR M-3BE: 5×10-5mol/L; pH 7; T=50 ℃). Moreover, the catalyst presented excellent regeneration capability and sustained catalytic ability in these experiments. Importantly, the Cit-Fe@ACFs/H2 O2 catalytic system exhibited remarkable catalytic activity across a wider pH range(2~10) and the values of apparent rate constant(kapp) were greater than 0.320 min 1, which was efficient to expand the pH range for the traditional Fenton reaction. Various scavengers and probe compounds(n-butanol, benzoquinone) combined with electron paramagnetic resonance(EPR) spectroscopy were used to identify the active species involved in the catalytic system. The results revealed that the hydroxyl radicals( OH) and superoxide radical(HO2) may be responsible for the degradation of dyes. This paper discusses a possible catalytic oxidation mechanism in the Cit-Fe@ACFs/H2 O2 system, which may be a feasible approach for the elimination of widely existing pollutants.
引文
[1]Zhou,X.;Lan,J.;Liu,G.;Deng,K.;Yang,Y.;Nie,G.;Yu,J.;Zhi,L.Angew.Chem.,Int.Ed.2012,51,178.
    [2]Ayoub,K.;van Hullebusch,E.D.;Cassir,M.;Bermond,A.J.Hazard.Mater.2010,178,10.
    [3]Jiang,H.;Wang,Q.;Li,J.;Wang,Q.;Li,Z.Acta Chim.Sinica2012,70,2173.(姜洪泉,王巧凤,李井申,王庆元,李振宇,化学学报,2012,70,2173).
    [4]Ma,J.;Song,W.;Chen,C.;Ma,W.;Zhao,J.;Tang,Y.Environ.Sci.Technol.2005,39,5810.
    [5]Nam,S.;Renganathan,V.;Tratnyek,P.Chemosphere 2001,45,59.
    [6]Joonseon,J.;Jeyong,Y.Water Res.2005,39,2893.
    [7]Huang,W.;Brigante,M.;Wu,F.;Mousty,C.;Hanna,K.;Mailhot,G.Environ.Sci.Technol.2013,47,1952.
    [8]Silva,M R.A.;Trovo,A.G.;Nogueira,R.F.P.J.Photochem.Photobiol.A 2007,191,187.
    [9]Schmidt,C.;Fleig,M.;Sacher,F.;Brauch,H.Environ.Pollut.2004,131,107.
    [10]Dean,J.A.Lange's Chemistry Handbook,13th ed.,Science Press,Beijing,1991,Chapter 5.5.(Dean,J.A.兰氏化学手册,第十三版,科学出版社,北京,1991,Chapter 5.5.).
    [11]Feng,X.;Wang,Z.;Chen,Y.;Tao,T.;Wu,F.;Zuo,Y.Ind.Eng.Chem.Res.2012,51,7007.
    [12]Guo,J.;Du,Y.;Lan,Y.;Mao,J.J.Hazard.Mater.2011,186,2083.
    [13]Chen,M.;Ma,W.;Li,J.;Huang,Y.;Zhao,J.Environ.Sci.Technol.2004,38,1569.
    [14]Gonzalez-Olmos,R.;Holzer,F.;Kopinke,F.;Georgi,A.Appl.Catal.A:General 2011,398,44.
    [15]Martínez,F.;Pariente,M.;ángel,J.;Melero,J.;Rubalcaba,A.J.Chem.Technol.Biotechnol.2012,87,880.
    [16]Ramirez,J.;Vicente,M.;Madeira,L.Appl.Catal.B:Environ.2010,98,10.
    [17]Filipa,D.;Francisco,J.M.;Luis,M.M.Appl.Catal.B:Environ.2013,129,264.
    [18]Gergo,M.;Frank,P.Z.;Josep,F.;Agustí,F.;Azael,F.J.Environ.Manage.2012,102,148.
    [19]Lu,W.;Chen,W.;Li,N.;Xu,M.;Yao,Y.Appl.Catal.B:Environ.2009,87,146.
    [20]Yao,Y.;Wang,L.;Sun,L.;Zhu,S.;Huang,Z.;Mao,Y.;Lu,W.;Chen,W.Chem.Eng.Sci.2013,101,424.
    [21]Chen,J.;Zhu,L.Catal.Today 2007,126,463.
    [22]Rodríguez,A.;Ovejero,G.;Sotelo,J.;Mestanza,M.;García,J.Ind.Eng.Chem.Res.2010,49,498.
    [23]Xu,L.;Wang,J.Environ.Sci.Technol.2012,46,10145.
    [24]Zhou,L.;Song,W.;Chen,Z.;Yin,G.Environ.Sci.Technol.2013,47,3833.