不同气候情景下四子柳的亚洲潜在地理分布格局变化预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios
  • 作者:李文庆 ; 徐洲锋 ; 史鸣明 ; 陈家辉
  • 英文作者:LI Wenqing;XU Zhoufeng;SHI Mingming;CHEN Jiahui;Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences;College of Forestry, Southwest Forestry University;
  • 关键词:最大熵模型 ; 四子柳 ; 气候变化 ; 适宜生境
  • 英文关键词:Maxent;;Salix tetrasperma Roxb.;;climate change;;suitable habitat
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院昆明植物研究所中国科学院东亚植物多样性与生物地理学重点实验室;西南林业大学林学院;
  • 出版日期:2019-02-27 08:29
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31670198);; 中国科学院昆明植物研究所自主部署项目(KIB2016005)
  • 语种:中文;
  • 页:STXB201909019
  • 页数:11
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:209-219
摘要
四子柳(Salix tetrasperma Roxb.)为杨柳科柳属为数不多的分布区扩展到热带的物种之一,广泛分布于华南和东南亚地区,但其生境破碎化较为严重。该物种具有较高的园林绿化价值和生态价值,预测不同气候情景下该物种的地理分布将为四子柳的资源开发和合理利用乃至柳属的起源和分化研究提供重要的科学依据。利用四子柳全面且精确的分布信息和高分辨率环境数据,基于Maxent模型和ArcGIS空间分析,构建其末次间冰期、末次盛冰期、当代以及未来(2050,2070)的潜在空间分布格局,评价环境因子对分布模型的重要性,定量确定未来受到威胁的适宜生境区域和面积。结果表明,四子柳目前的适宜生境面积为234.65×10~4 km~2,主要位于东亚、南亚和东南亚的热带地区,气温年较差和年均降水量是限制其分布的主要环境因子。总体而言,从冰期至未来,四子柳的分布中心有南北往返迁移的趋势。四子柳在末次盛冰期时向西北方向扩张并开始出现于热带地区,表明该物种开始适应热带气候,进入全新世中期以后种群收缩并退缩到云贵高原的河谷地区和印度尼西亚的平原区域。随着全球气候变暖,在不同二氧化碳浓度路径下2050年和2070年四子柳的潜在适生境有可能破碎化增加,建议对缅甸东部及中部成片减少的边缘群体进行实时监测。
        Salix tetrasperma Roxb. is one of the few species of the genus Salix L. and family Salicaceae with a distribution area extending to the tropical zone. This species has a high landscaping and ecological value, and is distributed widely in south China and southeast Asia, but its habitat is highly fragmented. A prediction of the impact of climate change on the distribution of this species will facilitate the rational utilization of germplasm resources of S. tetrasperma, as well as research into the biodiversity of Salix. Based on comprehensive and accurate distribution records and high-resolution environmental data, we modeled the potential range of S. tetrasperma during the Last Inter Glacial(LIG), Last Glacial Maximum(LGM), current, and future(2050, 2070) periods. We evaluated the importance of environmental factors in shaping the species′ distribution, and quantificationally identified regions of high risk under different climate scenarios. The niche models showed that S. tetrasperma has suitable habitat of approximately 234.65×10~4 km~2 in the tropical habitats of east Asia, south Asia, and southeast Asia. Air temperature annual range and annual precipitation were identified as the critical factors shaping habitat availability for S. tetrasperma. During the LGM, the distribution center of S. tetrasperma from the glacial epoch to future presented a tendency for migration back and forth between the north and south. The distribution area of S. tetrasperma expanded to the northwest and started to occur in the tropical zone, which suggested it began to adapt to a tropical climate. Populations of S. tetrasperma retreated into the valley of the Yunnan-Guizhou Plateau and plains region of Indonesia after the mid-Holocene period. The habitat of S. tetrasperma might be more fragmented in 2050 and 2070 owing to global warming. We therefore suggest monitoring the peripheral population in eastern and central Myanmar.
引文
[1] Qin H,Dong G,Zhang Y B,Zhang F,Wang M B.Patterns of species and phylogenetic diversity of Pinus tabuliformis forests in the eastern Loess Plateau,China.Forest Ecology and Management,2017,394:42- 51.
    [2] Pio D V,Engler R,Linder H P,Monadjem A,Cotterill F P D,Taylor PJ,Schoeman M C,Price B W,Villet M H,Eick G,Salamin N,Guisan A.Climate change effects on animal and plant phylogenetic diversity in southern Africa.Global Change Biology,2014,20(5):1538- 1549.
    [3] Berthel N,Schw?rer C,Tinner W.Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass,Bernese Alps,Switzerland.Review of Palaeobotany and Palynology,2012,174:91- 100.
    [4] Thuiller W,Lavergne S,Roquet C,Boulangeat I,Lafourcade B,Araujo M B.Consequences of climate change on the tree of life in Europe.Nature,2011,470(7335):531- 534.
    [5] Veloz S D,Williams J W,Blois J L,He F,Otto-Bliesner B,Liu Z Y.No‐analog climates and shifting realized niches during the late quaternary:implications for 21st‐century predictions by species distribution models.Global Change Biology,2012,18(5):1698- 1713.
    [6] Svenning J C,Skov F.Limited filling of the potential range in European tree species.Ecology Letters,2004,7(7):565- 573.
    [7] Huntley B,Collingham Y C,Singarayer J S,Valdes P J,Barnard P,Midgley G F,Altwegg R,Ohlemüller R.Explaining patterns of avian diversity and endemicity:climate and biomes of southern Africa over the last 140,000 years.Journal of Biogeography,2016,43(5):874- 886.
    [8] Araújo M B,Nogués-Bravo D,Diniz-Filho J A F,Haywood A M,Valdes P J,Rahbek C.Quaternary climate changes explain diversity among reptiles and amphibians.Ecography,2008,31(1):8- 15.
    [9] Brubaker L B,Garfinkel H L,Edwards M E.A Late Wisconsin and Holocene vegetation history from the central brooks range:implications for Alaskan palaeoecology.Quaternary Research,1983,20(2):194- 214.
    [10] Bigelow N H,Brubaker L B,Edwards M E,Harrison S P,Prentice I C,Anderson P M,Andreev A A,Bartlein P J,Christensen T R,Cramer W,Kaplan J O,Lozhkin A V,Matveyeva N V,Murray D F,McGuire A D,Razzhivin V Y,Ritchie J C,Smith B,Walker D A,Gajewski K,Wolf V,Holmqvist B H,Igarashi Y,Kremenetskii K,Paus A,Pisaric M F J,Volkova V S.Climate change and Arctic ecosystems:1.Vegetation changes north of 55°N between the last glacial maximum,mid‐Holocene,and present.Journal of Geophysical Research Atmospheres,2003,108(D19):8170.
    [11] Wang Q G,Su X Y,Shrestha N,Liu Y P,Wang S Y,Xu X T,Wang Z H.Historical factors shaped species diversity and composition of Salix in eastern Asia.Scientific Reports,2017,7:42038.
    [12] IPCC.Technical summary//Stocker T F,Qin D,Plattner G K,Tignor M,Allen S K,Doschung J,Nauels A,Xia Y,Bex V,Midgley P M,eds.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:95- 123.
    [13] Bellard C,Bertelsmeier C,Leadley P,Thuiller W,Courchamp F.Impacts of climate change on the future of biodiversity.Ecology Letters,2012,15(4):365- 377.
    [14] Lawler J J,Shafer S L,White D,Kareiva P,Maurer E P,Blaustein A R,Bartlein P J.Projected climate-induced faunal change in the western Hemisphere.Ecology,2009,90(3):588- 597.
    [15] 中国科学院中国植物志编辑委员会.中国植物志第二十卷第二分册被子植物门,双子叶植物纲,杨柳科.北京:科学出版社,1984.
    [16] 胡连翰.理想的护堤树种——四子柳.广东林业科技,1980,(1):41- 42.
    [17] Karp A,Shield I.Bioenergy from plants and the sustainable yield challenge.New Phytologist,2008,179(1):15- 32.
    [18] 侯元凯,蓝正勇,张根梅.我国杨柳科彩叶树种种质资源及应用.世界林业研究,2017,30(2):77- 81.
    [19] 方振富,王镜泉,杨喜林.甘肃省杨柳科植物资源.西北师范大学学报:自然科学版,1981,(1):43- 54.
    [20] Chen J H,Sun H,Wen J,Yang Y P.Molecular phylogeny of Salix L.(Salicaceae) inferred from three chloroplast datasets and its systematic implications.Taxon,2010,59(1):29- 37.
    [21] Wang R Q,Wang J Z.A study on the chromosome numbers and their evolution in Salicaceae.Journal of Beijing Forestry University,1991,13(4):32- 38.
    [22] Yan Y J,Xian Y,Tang Z Y.Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.Ecology and Evolution,2013,3(13):4584- 4595.
    [23] Stevens G C.The latitudinal gradient in geographical range:how so many species coexist in the tropics.The American Naturalist,1989,133(2):240- 256.
    [24] Pearson R G,Raxworthy C J,Nakamura M,Peterson A T.Original Article:predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar.Journal of Biogeography,2007,34(1):102- 117.
    [25] Zhang M G,Slik J W F,Ma K P.Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China.Scientific Reports,2016,6:22400.
    [26] Hijmans R J,Cameron S E,Parra J L,Jones P G,Jarvis A.Very high resolution interpolated climate surfaces for global land areas.International Journal of Climatology,2005,25(15):1965- 1978.
    [27] Fischer G,Shah M,Van Velthuizen H,Nachtergaele F O.Global Agro-Ecological Assessment for Agriculture in the 21st Century:Methodology and Results.RR-02-02.Laxenburg,Austria:IIASA.
    [28] Otto-Bliesner B L,Marshall S J,Overpeck J T,Miller G H,Hu A,CAPE Last Interglacial Project Members.Simulating Arctic climate warmth and icefield retreat in the last interglaciation.Science,2006,311(5768):1751- 1753.
    [29] Van Vuuren D P,Edmonds J,Kainuma M,Riahi K,Thomson A,Hibbard K,Hurtt G C,Kram T,Krey V,Lamarque J F,Masui T,Meinshausen M,Nakicenovic N,Smith S J,Rose S K.The representative concentration pathways:an overview.Climatic Change,2011,109(1/2):5- 31.
    [30] Moor H,Hylander K,Norberg J.Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits.Ambio,2015,44(S1):113- 126.
    [31] Fitzpatrick M C,Gotelli N J,Ellison A M.MaxEnt versus MaxLike:empirical comparisons with ant species distributions.Ecosphere,2013,4(5):55.
    [32] Bertrand R,Perez V,Gégout J C.Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change:the case of Quercus pubescens in France.Global Change Biology,2012,18(8):2648- 2660.
    [33] Wisz M S,Hijmans R J,Li J,Peterson A T,Graham C H,Guisan A.Effects of sample size on the performance of species distribution models.Diversityand Distributions,2008,14(5):763- 773.
    [34] Graham C H,Elith J,Hijmans R J,Guisan A,Peterson A T,Loiselle B A,Jane E,Robertj H,Antoine G,Townsend P A.The influence of spatial errors in species occurrence data used in distribution models.Journal of Applied Ecology,2008,45(1):239- 247.
    [35] 胡忠俊,张镱锂,于海彬.基于MaxEnt模型和GIS的青藏高原紫花针茅分布格局模拟.应用生态学报,2015,26(2):505- 511.
    [36] 杨一欣.白皮松组植物的群体遗传学和物种形成研究[D].西安:西北大学,2016.
    [37] Phillips S J,Anderson R P,Schapire R E.Maximum entropy modeling of species geographic distributions.Ecological Modelling,2006,190(3/4):231- 259.
    [38] Swets J A.Measuring the accuracy of diagnostic systems.Science,1988,240(4857):1285- 1293.
    [39] Jiménez-Valverde A,Lobo J M.Threshold criteria for conversion of probability of species presence to either-or presence-absence.Acta Oecologica,2007,31(3):361- 369.
    [40] Etherington T R.Python based GIS tools for landscape genetics:visualising genetic relatedness and measuring landscape connectivity.Methods in Ecology and Evolution,2011,2(1):52- 55.
    [41] Li G Q,Xu G H,Guo K,Du S.Geographical boundary and climatic analysis of Pinus tabulaeformis in China:Insights on its afforestation.Ecological Engineering,2016,86:75- 84.
    [42] Hamann A,Wang T L.Potential effects of climate change on ecosystem and tree species distribution in British Columbia.Ecology,2006,87(11):2773- 2786.
    [43] 王雷宏,杨俊仙,郑玉红,汤庚国.苹果属山荆子地理分布模拟.北京林业大学学报,2011,33(3):70- 74.
    [44] Iverson L R,McKenzie D.Tree-species range shifts in a changing climate:detecting,modeling,assisting.Landscape Ecology,2013,28(5):879- 889.
    [45] 高文强,王小菲,江泽平,刘建锋.气候变化下栓皮栎潜在地理分布格局及其主导气候因子.生态学报,2016,36(14):4475- 4484.
    [46] 胡秀,吴福川,郭微,刘念.基于MaxEnt生态学模型的檀香在中国的潜在种植区预测.林业科学,2014,50(5):27- 33.
    [47] Khanum R,Mumtaz A S,Kumar S.Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling.Acta Oecologica,2013,49:23- 31.
    [48] Wang J R,Hawkins C D B,Letchford T.Photosynthesis,water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes.Forest Ecology and Management,1998,112(3):233- 244.
    [49] 何奇瑾,周广胜.我国春玉米潜在种植分布区的气候适宜性.生态学报,2012,32(12):3931- 3939.
    [50] 李垚,张兴旺,方炎明.小叶栎分布格局对末次盛冰期以来气候变化的响应.植物生态学报,2016,40(11):1164- 1178.
    [51] Qiu Y X,Fu C X,Comes H P.Plant molecular phylogeography in China and adjacent regions:Tracing the genetic imprints of Quaternary climate and environmental change in the world′s most diverse temperate flora.Molecular Phylogenetics and Evolution,2011,59(1):225- 244.
    [52] 应凌霄,刘晔,陈绍田,沈泽昊.气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟.生物多样性,2016,24(4):453- 461.
    [53] 马松梅,魏博,李晓辰,罗冲,孙芳芳.气候变化对梭梭植物适宜分布的影响.生态学杂志,2017,36(5):1243- 1250.
    [54] 郭彦龙,卫海燕,路春燕,张海龙,顾蔚.气候变化下桃儿七潜在地理分布的预测.植物生态学报,2014,38(3):249- 261.
    [55] Patricola C M,Chang P,Saravanan R.Impact of Atlantic SST and high frequency atmospheric variability on the 1993 and 2008 Midwest floods:regional climate model simulations of extreme climate events.Climatic Change,2015,129(3/4):397- 411.
    [56] Seto K C,Güneralp B,Hutyra L R.Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools.Proceedings of the National Academy of Sciences of the United States of America,2012,109(40):16083- 16088.
    [57] Midgley G F,Hannah L,Millar D,Thuiller W,Booth A.Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region.Biological Conservation,2003,112(1/2):87- 97.