均匀高温绝缘系统油浸式配电变压器结构优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure Optimization of Well-distributed High Temperature Insulation System Oil-immersed Distribution Transformer
  • 作者:赵莉华 ; 刘丹华 ; 张宗喜 ; 刘睿 ; 蒋伟 ; 王仲
  • 英文作者:ZHAO Lihua;LIU Danhua;ZHANG Zongxi;LIU Rui;JIANG Wei;WANG Zhong;School of Electrical Eng.and Info.,Sichuan Univ.;State Grid Sichuan Electric Power Research Inst.;
  • 关键词:油浸式配电变压器 ; 均匀高温绝缘系统 ; 散热能力 ; 耐热能力 ; 结构优化
  • 英文关键词:oil-immersed distribution transformers;;well-distributed high temperature insulation system;;heat dissipating capacity;;heat resistance;;structure optimization
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:四川大学电气信息学院;国家电网四川省电力科学研究院;
  • 出版日期:2017-07-20
  • 出版单位:工程科学与技术
  • 年:2017
  • 期:v.49
  • 语种:中文;
  • 页:SCLH201704023
  • 页数:7
  • CN:04
  • ISSN:51-1773/TB
  • 分类号:184-190
摘要
随着电力系统安全可靠性和经济环保性要求的不断提高,亟需更换绝缘材料以提升油浸式配电变压器性能。基于传热学经典理论、油浸式电力变压器负载导则和采用高温绝缘材料的液浸式变压器设计和应用导则,针对采用新型绝缘材料的均匀高温绝缘系统油浸式配电变压器进行研究。根据新型绝缘材料与常规绝缘材料的性能差异,利用热对流经典理论对比均匀高温绝缘系统配变和常规绝缘系统配变的散热能力;依据导则确定不同绝缘系统油浸式配变的过载温度限值,改进得到适用于均匀高温绝缘系统配变的热点温度计算模型,对比均匀高温绝缘系统配变和常规绝缘系统配变在长期急救负载下的允许过载倍数,以获得二者的耐热能力差异;基于性能对比,提出均匀高温绝缘系统配变的结构优化设计方案,并计算由此带来的制造成本改变。结果显示均匀高温绝缘系统配变的散热能力约为常规绝缘系统配变的80.2%,但耐热能力可达到常规绝缘系统配变的119%。结论表明:可缩小均匀高温绝缘系统配变的绕组导线线径、铁心体积、箱体体积、减少绝缘材料用量,同时加宽其绕组油道和进、出口油径、增加散热器数量,即在更换常规绝缘系统油浸式配变绝缘材料的同时对其结构进行优化调整,可在总成本提高约34%的情况下将油浸式配变的耐温限值由140℃提升至170℃。
        With the rise of safety,economic and environmental protection requirements of power systems,replacingthe insulation materials to enhance the performance of oil-immersed distribution transformer is high needed.Based on the classical theory of heat transfer,"Loading guide for oil-immersed power transformers" and "Design and application of liquid-immersed transformers using high-temperature insulation material",the well-distributed high temperature insulation system of oil-immersed distribution transformer using new insulation materials was studied.According to the performance differences between new insulation materials and conventional insulation materials,the heat dissipating capacity of the well-distributed high temperature transformer and the conventional transformer was compared using the theory of heat convection.According to the guidelines,the overload temperature limit of oil-immersed transformers in different insulation systems were determined and the hot spot temperature calculation model suitable for the well-distributed high temperature transformer wasobtained.In order to obtain the differences of heat resistance,the permissible overload times of different transformers under long term emergency load was compared.On the basis of performance comparison,a structure optimization method for the well-distributed high temperature transformer was proposed and the manufacturing cost changes were calculated.It was found thatwhile the heat dissipation capability of the well-distributed high temperature transformer is 80.2% of that of the conventional transformer,the heat resistance of the former is up to 119% of the latter.The conclusion showed that a well-distributed high temperature transformer could be obtained by reducing the winding radius,the iron core volume,the tank volume,the amount of the insulating material,simultaneously widening the oil path,the oil inlet and outlet diametersand increasing the number of the radiators.The hot spot temperature limit can be raisedfrom 140 ℃ to 170 ℃ with the total costincreaseof 34% by replacing the conventional insulation materials with new insulation materials and optimizing the structure.
引文
[1]Li Jian,Yao Shuhan,Du Bin,et al.Analysis to principle problems and future prospect of researchon vegetable-insulating oils and their applications[J].High Voltage Engineering,2015,41(2):343-363.[李剑,姚舒瀚,杜斌,等.植物绝缘油及其应用研究关键问题分析与展望[J].高电压技术,2015,41(2):343-363.]
    [2]Li Jian,Dang Jianliang,Yang Lijun,et al.Comparison on physical and chemical characteristics and electric properties of three types of vegetableinsulating oil[J].Journal of Chongqing University,2007,30(9):42-45.[李剑,党剑亮,杨丽君,等.三种植物绝缘油的理化与电气性能的比较[J].重庆大学学报(自然科学版),2007,30(9):42-45.]
    [3]Liao Ruijin,Feng Yun,Yang Lijun,et al.Study on generation rate of characteristic products of oil-paper insulation aging[J].Proceedings of the CSEE,2008,28(10):142-147.[廖瑞金,冯运,杨丽君,等.油纸绝缘老化特征产物生成速率研究[J].中国电机工程学报,2008,28(10):142-147.]
    [4]Yang Lijun,Deng Bangfei,Liao Ruijin,et al.Influence of vegetable oil on the thermal aging rate of kraft paper and its mechanism[J].High Voltage Engineering,2012(8):257-265.[杨丽君,邓帮飞,廖瑞金,等.植物绝缘油对绝缘纸热老化速率的影响及其机理[J].高电压技术,2012(8):257-265.]
    [5]Wang Baimei.Study on the compatibility between vegetable insulating oil and insulation materials in oil filled transformer[D].Chongqing:Chongqing University,2014.[王白梅.植物绝缘油与充油变压器绝缘材料相容性研究[D].重庆:重庆大学,2014.]
    [6]Zou Ping,Li Jian,Sun Caixin,et al.Impregnation model and experimental investigation of vegetable insulating oil-paper insulation[J].Proceedings of the CSEE,2011,31(25):125-131.[邹平,李剑,孙才新,等.植物绝缘油纸浸渍模型与试验研究[J].中国电机工程学报,2011,31(25):125-131.]
    [7]张显忠,徐子宏,胡振忠,等.采用高温绝缘材料的液浸式变压器的设计和应用:GB/Z 1094.14-2011[S].北京:中国标准出版社,2011.
    [8]Zhao Lihua,Wang Shiying.Research status of high-temperature insulating materialsused in oil-immersed transformers[J].Insulating Materials,2016(4):1-6.[赵莉华,王释颖.油浸式变压器高温绝缘材料的研究现状[J].绝缘材料,2016(4):1-6.]
    [9]Han Jinhua,Han Shaigen,Wang Sibao,et al.Transformer design method based on high ignition point vegetable insulation oil[J].Transformer,2014,51(8):38-42.[韩金华,韩筛根,王思宝,等.一种基于高燃点植物绝缘油变压器设计方法[J].变压器,2014,51(8):38-42.]
    [10]Yang Qingfu,Qi Yingshi,Shen Shanlin,et al.A high overload distribution transformer in rural net[J].Transformer,2015(2):22-25.[杨庆福,祁颖矢,沈山林,等.一种农网高过载配电变压器[J].变压器,2015(2):22-25.]
    [11]孙军,谢庆峰,孙树波,等.油浸式电力变压器负载导则:GB/T 1094.7-2008[S].北京:中国标准出版社,2008.
    [12]Chen Weigen,Su Xiaoping,Zhou Qu,et al.An improved dynamic model of transformer hot spot temperature based on top oil temperature[J].Journal of Chongqing University,2012,35(5):69-75.[陈伟根,苏小平,周渠,等.基于顶层油温的变压器绕组热点温度计算改进模型[J].重庆大学学报(自然科学版),2012,35(5):69-75.]
    [13]Chen Jiong,Xue Fei,Zhou Jiancong,et al.Improved calculation method for transformer hot spot temperature with dynamic load[J].East China Electric Power,2014,42(12):2539-2543.[陈炯,薛飞,周健聪,等.动态负载下改进的变压器热点温度计算方法[J].华东电力,2014,42(12):2539-2543.]
    [14]Susa D,Lehtonen M.Dynamic thermal modeling of power transformers:Further development partⅡ[J].IEEE Transactions on Power Delivery,2006,21(4):1971-1980.
    [15]Song You,Ruan Jiangjun,Wang Shanshan,et al.Simulation analysis of thermal property of insulating oil for oilimmersed transformer[J].Insulating Materials,2015(4):21-24.[宋友,阮江军,王珊珊,等.油浸式变压器绝缘油热特性的仿真分析[J].绝缘材料,2015(4):21-24.]