基于压电材料的薄膜声学超材料隔声性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials
  • 作者:贺子厚 ; 赵静波 ; 姚宏 ; 蒋娟娜 ; 陈鑫
  • 英文作者:He Zi-Hou;Zhao Jing-Bo;Yao Hong;Jiang Juan-Na;Chen Xin;Graduate School, Air Force Engineering University;Department of Basic, Air Force Engineering University;
  • 关键词:压电材料 ; 薄膜声学超材料 ; 有限元法
  • 英文关键词:piezoelectric materials;;thin film acoustic metamaterials;;finite element method
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:空军工程大学研究生院;空军工程大学基础部;
  • 出版日期:2019-07-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11504429)资助的课题~~
  • 语种:中文;
  • 页:WLXB201913019
  • 页数:12
  • CN:13
  • ISSN:11-1958/O4
  • 分类号:179-190
摘要
针对低频噪声的隔离问题,设计了一种基于压电材料的可调控薄膜声学超材料,该材料由压电质量块嵌入弹性薄膜制成.建立了材料的有限元分析模型,并且计算了材料的各阶特征频率与20—1200 Hz频段的传输损失曲线,并通过实验验证了有限元计算的真实性.计算结果表明:此声学超材料在20—1200 Hz频段内隔声性能良好,存在两个50 dB以上的隔声峰与一个可调式的隔声峰.通过分析简单结构的首阶共振模态并构建其等效模型,从理论上探究了结构参数对薄膜声学超材料隔声性能的影响,并通过有限元计算验证了其等效模型的正确性;综合分析材料的特征频率与传输损失曲线,进一步讨论了结构的隔声机理,分析结果表明,在特征频率处,薄膜的"拍动"会导致声波在其后的传播过程中干涉相消,实现声波的衰减;通过Fano共振理论,探究了各共振点处传输损失曲线特征不同的原因;压电质量块与外接电路组成LC振荡电路,在电路的共振频率处,压电材料的振动可以吸收声波的能量从而造成一个隔声峰,同时可以改变外接电路的参数来调整电路的共振频率,从而实现对隔声性能的调控.最后,探究了压电质量块偏心量对材料性能的影响,并通过有限元计算验证了材料隔声性能的可调性.研究结果为可调式薄膜声学超材料的设计提供了理论参考.
        Aiming at the isolation of low-frequency sound, a kind of thin-film acoustic metamaterialis designed and obtained by implanting PZT into thin film. The finite element method(FEM) of the structure is built, and 1 st–14 th order eigenfrequencies and transmission loss between 20–1200 Hz are calculated. The reliability of finite element calculation is verified experimentally and the existence of adjustable sound insulation peak is monitored in the experiment. The results show that the acoustic metamaterial has good sound insulation performance in a frequency range between 20 and 1200 Hz, and has two sound insulation peaks of more than 50 dB, and there is a sound insulation peak which can be changed by adjusting the parameters of the outer circuit. By analyzing the first resonance mode of simple structure and building its equivalent model, the effect of structural parameter on the sound insulation performance of thin film acoustic metamaterial is investigated theoretically, and the rationality of the equivalent model is verified by the finite element calculation. The sound insulation mechanism of the structure is further illustrated by taking into consideration the eigenfrequencies, transmission loss curve and vibration mode diagrams at various frequencies. It is found that at the resonance frequency, the flapping motion of the film will cause the sound wave in the subsequent propagation to cancell the interference, therefore realizing the attenuation of the sound wave. Based on Fano resonance theory, the reasons for the different characteristics of transmission loss curves at different resonance points are investigated. The PZT and outer circuit can form a LC oscillator. At the resonant frequency of the oscillator, the vibration of the piezoelectric material can absorb the energy of sound wave to cause a sound insolation peak. The resonant frequency of the circuit can be adjusted by changing the parameters of the outer circuit, thereby realizing the adjustability of the sound insulation performance. The influence of eccentricity of piezoelectric mass block on sound insulation performance of material is explored, proving that the sound insulation performance can be further optimized by improving structure. And through the finite element calculation, it is proved that the sound insulation performance of material is adjustable by changing the parameters of the outer circuit. The results provide a theoretical reference for designing the thin film acoustic metamaterials.
引文
[1]Deng J H, Wang K, Chen G P 2008 Acta Aeronaut.Astronaut. Sin. 29 1581(in Chinese)[邓吉宏,王柯,陈国平2008航空学报29 1581]
    [2]Bolton J S, Shiau N M, Kang Y 1996 JSV 191 317
    [3]Liu Z, Zhang X X, Chan C T, Sheng P 2000 Science 289 1734
    [4]Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302(in Chinese)[张思文,吴九汇2013物理学报62 134302]
    [5]Zhang S, Guo S X, Yao H, Zhao J B, Jiang J N, He Z H 2018Piezoelectr. Acoustoopt. 40 754(in Chinese)[张帅,郭书祥,姚宏,赵静波,蒋娟娜,贺子厚2018压电与声光40 754]
    [6]Zhao T T, Lin S Y, Duan W L 2018 Acta Phys. Sin. 67224207(in Chinese)[赵甜甜,林书玉,段祎林2018物理学报67 224207]
    [7]Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303(in Chinese)[王莎,林书玉2019物理学报68 024303]
    [8]Zhang Z F, Yu D L, Liu J W, Wen J H 2018 Acta Phys. Sin.67 074301(in Chinese)[张振方,郁殿龙,刘江伟,温激鸿2018物理学报67 074301]
    [9]Du C Y, Yu D L, Liu J W, Wen J H 2017 Acta Phys. Sin. 66140701(in Chinese)[杜春阳,郁殿龙,刘江伟,温激鸿2017物理学报66 140701]
    [10]Mei J, Yang M, Yang Z Y, Chan N H, Shen P 2018 Phys.Rev. Lett. 101 204301
    [11]Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Shen P 2012Nat. Commun. 3 756
    [12]Mei J, Ma G C, Yang M 2012 Physics 41 425(in Chinese)[梅军,马冠聪,杨旻2012物理41 425]
    [13]Chen Y, Huang G, Zhou X, Hu G, Sun C 2014 J. Acoust.Soc. Am. 136 969
    [14]Langfeldt F, Gleine W, von Estorff O 2015 JSV 349 315
    [15]Zhang J L, Yao H, Du J, Zhao J B, Dong Y K, Qi P S 2016J. Synth. Cryst. 45 2549(in Chinese)[张佳龙,姚宏,杜军,赵静波,董亚科,祁鹏山2016人工晶体学报45 2549]
    [16]Ye C, Su J L 2017 Noise Vibr. Control 37 163(in Chinese)[叶超,苏继龙2017噪声与振动控制37 163]
    [17]Zhou Y, Wu W G, Wen Y F 2017 Tech. Acoust. 36 297(in Chinese)[周榕,吴卫国,闻轶凡2017声学技术36 297]
    [18]Xing T, Li X H, Gai X L, Zhang B, Xie P 2016 Tech. Acoust.35 2(in Chinese)[邢拓,李贤徽,盖晓玲,张斌,谢鹏2016声学技术35 2]
    [19]Zhang Y, Wen J 2012 JASA 131 3372
    [20]Preumont A 2011 Vibration Control of Active Structures(Berlin:Springer)pp21–59
    [21]Chen S B, Wen J H, Yu D L, Wang G, Wen X 2011 Chin.Phys. B 20 014301
    [22]Zhang H, Wen J, Xiao Y, Wang G, Wen X 2015 JSV 343 104
    [23]Dong Y K, Yao H, Du J, Zhao J B, Jiang J L 2018Piezoelectr. Acoustoopt. 40 860(in Chinese)[董亚科,姚宏,杜军,赵静波,姜久龙2018压电与声光40 860]
    [24]Liao T, Sun X W, Song T, Tian J H, Kang T F, Sun W B2018 Acta Phys. Sin. 67 214208(in Chinese)[廖涛,孙小伟,宋婷,田俊红,康太凤,孙伟彬2018物理学报67 214208]
    [25]Sun W H, Zhang C Q, JüG L, Pan J W 2018 Acta Phys.Sin. 67 194303(in Chinese)[孙炜海,张超群,鞠桂玲,潘晶雯2018物理学报67 194303]
    [26]Yubao S, Leping F, Jihong W, Dianlong Y, Xisen W 2015Phys. Lett. A 379 1449
    [27]Chen S B 2014 Ph. D. Dissertation(Changsha:National University of Defense Technology)(in Chinese)[陈圣兵2014博士学位论文(长沙:国防科技大学)]
    [28]Wang C H, Zhao Z Y 1981 Acta Acust. 4 263(in Chinese)[汪承灏,赵哲英1981声学学报4 263]
    [29]He Z H, Zhao J B, Yao H, Jiang J N, Zhang S 2019Piezoelectr. Acoustoopt. 41 40(in Chinese)[贺子厚,赵静波,姚宏,蒋娟娜,张帅2019压电与声光41 40]
    [30]Fano U 1961 Phys. Rev. 124 1866
    [31]Pan T T, Cao W, Deng C S, Wang M, Xia W, Hao H 2018Acta Phys. Sin. 67 157301(in Chinese)[潘庭婷,曹文,邓彩松,王鸣,夏巍,郝辉2018物理学报67 157301]
    [32]Mikhail F, Mikhail V, Alexander N, Yuri S 2017 Nat. Photon.11 543