基于FDTD的电磁波在煤中传播特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Propagation characteristics of electromagnetic wave based on FDTD in coal
  • 作者:文虎 ; 张铎 ; 郑学召 ; 樊世星 ; 王伟峰
  • 英文作者:WEN Hu;ZHANG Duo;ZHENG Xuezhao;FAN Shixing;WANG Weifeng;College of Safety Science and Engineering,Xi'an University of Science and Technology;Key Laboratory of Coal Fire Hazard Prevention and Control of Shaanxi Province,Xi'an University of Science and Technology;National Mine Rescue Xi'an Research Center;
  • 关键词:矿山事故 ; 应急救援 ; 探测雷达 ; 数值模拟
  • 英文关键词:mine accident;;emergency rescue;;ground penetrating radar;;numerical simulation
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:西安科技大学安全科学与工程学院;西安科技大学陕西省煤火灾害防治重点实验室;国家矿山救援西安研究中心;
  • 出版日期:2017-11-15
  • 出版单位:煤炭学报
  • 年:2017
  • 期:v.42;No.278
  • 基金:国家重点研发计划资助项目(2016YFC0801800-02);; 国家自然科学基金青年基金资助项目(51504186);; 中国博士后基金资助项目(2016-M-592820)
  • 语种:中文;
  • 页:MTXB201711022
  • 页数:9
  • CN:11
  • ISSN:11-2190/TD
  • 分类号:182-190
摘要
针对矿山灾害事故发生时,逃生通道被堵,被困人员位置难以确定这一难题,以钻孔生命雷达为手段,开展了电磁波在煤矿井下传播规律的研究。采用时域有限差分法(FDTD)建立井下二维空间磁场(TM)模型,利用Gpr Max和Matlab数值软件对模型进行正演模拟计算。通过理论分析与正演模拟,研究了天线中心频率、激励源、煤质与煤温等条件改变时,反射波的幅值强度与反射系数变化规律,目标的探测时间与分辨率,揭示了电磁波在煤体中的传播规律。研究结果表明:天线中心频率为600 MHz的Ricker激励源是最佳探测方式;电磁波在烟煤中的传播速度最快,褐煤居中,无烟煤最次;电磁波在煤中的传播速度随温度的增加而增大,人体反射波幅值强度则随之减弱;人体反射波幅值强度与探测距离呈对数函数关系,据此提出建立相应数据库;确定了生命雷达与被困人员之间煤体厚度的计算方法。研究结果可为生命雷达系统的研发和现场救援探测数据的解释提供参考与支撑。
        In view of mine disastrous accidents,once the escape way is blocked,it is hard to locate the miners trapped in the mines.In this paper,the propagation characteristics of electromagnetic wave in coal mine were studied.The finite-difference time-domain(FDTD) method was used to establish the two-dimensional space magnetic field model,which was calculated based on forward simulation technique of Gpr Max and Matlab software packages.Through theoretical analysis and numerous simulation,the impacts of frequency of antenna center,excitation source,coal types and coal temperatures on the amplitude intensity of the reflected wave and reflection coefficient were investigated.Coupled with the researches referring to the target detection time and resolution,the propagation characteristics of electromagnetic wave in coals were eventually revealed.The results revealed that the Ricker wave with the center frequency of 600 MHz provided the best way of probing.The propagation velocity of electromagnetic wave was the fastest in bituminous coal and lowest in anthracite with lignite in the middle.The propagation velocity of the electromagnetic wave increased with rising coal temperatures.The amplitude intensity of the reflected wave of the human body was weakened with theincrease of coal temperature. Further study indicated that the amplitude intensity of the reflected wave of the human body had a logarithmic function with and the detection distance.The above conclusions were then applied for building a database to help the calculation on the thickness of coal between life radar and trapped personnel.The results of this study provide guidelines for the life radar system research as well as the development and on-site rescue detection data interpretation.
引文
[1]朱爱军,胡宾鑫,赵云,等.声光一体生命搜索与定位探测仪设计与实现[J].计算机工程与应用,2004(4):198-200.ZHU Aijun,HU Binxin,ZHAO Yun,et al.Design and implementation of life detect and orientation measurement system through sound and video integration[J].Computer Engineering and Applications,2004(4):198-200.
    [2]肖忠源.分布式微型音频生命探测系统的研制[D].成都:成都理工大学,2009.XIAO Zhongyuan.The design and implementation of the distributed miniature life detection system based on sound wave[D].Chengdu:Chengdu University of Technology,2009.
    [3]CHARPENTIER F,BUREAU B,TROLES J,et al.Infrared monitoring of underground CO2storage using chalcogenide glass fibers[J].Optical Materials,2009,31:496-500.
    [4]HEUSINKVELD B G,JACOBS A F G,HOLTSLAG A A M.Effect of openpath gas analyzer wetness on eddy covariance flux measurements:A proposed solution[J].Agricultural and Forest Meteorology,2008,148:1563-1573.
    [5]LOU Wenjing.An efficient N-to-1 multipath routing protocol in wireless sensor networks[A].2nd IEEE International Conference on Mobile Ad Hoc and Sensor Systems[C].Washington,2005:665-672.
    [6]ALMALKAWI I T,GUERRERO Zapata M.A secure cluster-based multipath routing protocol for WMSNs[J].Sensors,2011,11(4):4401-4424.
    [7]ANGELL A J,RAPPAPORT C M.Computational modeling analysis of radar scattering by clothing covered arrays of metallic body-worn explosive devices[J].Progress in Electromagnetics Research(PIER),2007,76:285-298.
    [8]严珊珊.用于雷达式生命探测仪的信号处理系统的设计[D].长春:长春理工大学,2012.YAN Shanshan.Design of signal processing system for radar-based life detector[D].Changchun:Changchun University of Science and Technology,2012.
    [9]DIAMANTI N,REDMAN D.Field observations and numerical models of GPR response from vertical pavement cracks[J].Journal of Applied Geophysics,2012,81:106-116.
    [10]SOLLA M,LORENZO H,RIAL F I.Ground-penetrating radar for the structural evaluation of masonry bridges:Results and interpretational tools[J].Construction and Building Materials,2012,29:458-465.
    [11]XIE X Y,QIN H,YU C,et al.An automatic recognition algorithm for GPR images of RC structure voids[J].Journal of Applied Geophysics,2013,99:125-134.
    [12]ZHANG P,GUO X X,MUHAMMAT N,et al.Research on probing and predicting the diameter of an underground pipeline by GPR during an operation period[J].Tunnelling and Underground Space Technology,2016,58:99-108.
    [13]NUNEZNIETO X,SOLLA M,NOVO A,et al.Three-dimensional ground-penetrating radar methodologies for the characterization and volumetric reconstruction of underground tunneling[J].Construction and Building Materials,2014,71:551-560.
    [14]Chanzy A,Tarussov A.Soil water content determination using digital ground penetrating radar[J].Soil Sci.Soc.Am.J.,1996,60(5):1318-1326.
    [15]WANG X D,HE L,YANG F,et al.Estimation of soil water content using ground penetrating radar[J].Chin.J.Geotech.Eng,2009,17:(5):697-701.
    [16]FAUCHARD C,DROBERT X,CARIOU J.GPR performances for thickness calibration on road test sites[J].NDT&E Int.,2003,36:67-75.
    [17]SOLLA M,LAGUELA H,GONZALEZJORGE P,et al.Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods:Preliminary findings[J].NDT&E International,2014,62:55-65.
    [18]SHANGGUAN P C,AI-QADI I L,LAHOUAR S.Pattern recognition algorithms for density estimation of asphalt pavement during compaction:a simulation study[J].Journal of Applied Geophysics,2014,107:8-15.
    [19]SOLLA M,LAGUELA H,MARCOS X Alvarez,et al.Application of non-destructive geomatic techniques and FDTD modeling to metrical analysis of stone blocks in a masonry wall[J].Construction and Building Materials,2012,36:14-19.
    [20]RUCKA M,LACHOWICZ J,ZIELINSKA M.GPR investigation of the strengthening system of a historic masonry tower[J].Journal of Applied Geophysics,2016,131:94-102.
    [21]YU Q M,ZHOU H L,WANG Y H,et al.Quality monitoring of metro grouting behind segment using ground penetrating radar[J].Construction and Building Materials,2016,110:189-200.
    [22]ORLANDO L.Semiquantitative evaluation of massive rock quality using ground penetrating radar[J].J.Appl.Geophys.,2003,52:1-9.
    [23]SOLLA M,LAGUELA H,RIVEIRO B,et al.Non-destructive methodologies in the assessment of the masonry arch bridge of Traba,Spain[J].Engineering Failure Analysis,2011,18:828-835.
    [24]Hunaidi O,Giamou P.Ground-Penetrating-Radar for detection of leaks in buried plastic water distribution pipes[A].Seventh International Conference on Ground-Penetrating-Radar[C].Lawrence,Kansas,USA,1998:27-30.
    [25]CROCCO L,PRISCO G,SOLDOVIERI F,et al.Early-stage leaking pipes GPR monitoring via microwave tomographic inversion[J].J.Appl.Geophys.,2009,67(4):270-277.
    [26]CAPINERI L,IVASHOV S,BECHTEL T,et al.Comparison of GPR sensor types for landmine detection and classifi cation[A].12th International conference on ground penetrating radar[C].Birmingham(UK),2008.
    [27]GONZALEZ-HUICI M A.Strategy for landmine detection and recognition using simulated GPR responses[A].Proceedings of the 14th International Conference on Ground Penetrating Radar[C].Shanghai,2012:877-82.
    [28]NOVO A,LORENZO H,RIAL F I,et al.3D GPR in forensics:Finding a clandestine grave in a mountainous environment[J].Forensic Science International,2011,204:134-138.
    [29]BOOTH A D,PRINGLE J K.Semblance analysis to assess GPR data from a five-year forensic study of simulated clandestine graves[J].Journal of Applied Geophysics,2016,125:37-44.
    [30]于师建.基于频移的煤岩介质电磁波衰减数值模拟[J].地球物理学进展,2013,28(6):3270-3275.YU Shijian.The numerical simulation of electromagnetic wave attenuation using the centroid frequency downshift method[J].Progress in Geophysics,2013,28(6):3270-3275.
    [31]岳蕾.电磁波在煤层中的传播规律与全波形概率反演方法研究[D].徐州:中国矿业大学,2016.YUE Lei.Study on the propagation law of electromagnetic wave in coal seam and its full waveform probabilistic inversion method[D].Xuzhou:China University of Mining and Technology,2016.
    [32]齐承霞.煤层超前探测中的探地雷达信号处理[D].西安:西安科技大学,2014.QI Chengxia.Ground penetrating radar signal processing in advanced detection in coal seam[D].Xi’an:Xi’an University of Science and Technology,2014.
    [33]YEE K S.Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J].IEEE T Antenn Propag,1966,14:49-58.
    [34]TRAIAN Dogaru,LAM Nguyen,CALVIN Le Sensors,et al.Computer models of the human body signature for sensing through the wall radar applications[R].DTIC Document,2007.
    [35]徐宏武.煤层电性参数测试及其煤岩特性关系的研究[J].煤炭科学技术,2005,33(3):42-47.XU Hongwu.Measurement and test of seam electric parameter and study on relation ship between seam electric parameter and coal petrology characteristics[J].Coal Science and Technology,2005,33(3):42-47.
    [36]Giannopoulos A.Modelling ground penetrating radar by GPR Max[J].Construction and Building Materials,2005,19:755-762.
    [37]LEE Jonah H,WANG Wei.Characterization of snow cover using ground penetrating radar for vehicle trafficability-Experiments and modeling[J].Journal of Terramechanics,2009,46:189-202.
    [38]李亚飞.地质雷达超前地质预报正演模拟[D].北京:北京交通大学,2011:26-29.LI Yafei.Forward simulation of ground penetrating radar for the tunnel fore geological forecast[D].Beijing:Beijing Jiaotong University,2011:26-29.
    [39]李大洪.影响地质雷达工作频率选择的若干因素[J].矿业安全与环保,2000,27(S):29-30.LI Dahong.Several factors affect the choice of working frequency of geological radar[J].Mining Safety&Environmental Protection,2000,27(S):29-30.
    [40]邓普.铁路车载探地雷达检测隧道渗漏水的研究[D].成都:西南交通大学,2015:21-22.DENG Pu.Research on detection of railway tunnel seepage with train-mounted GPR[D].Chengdu:Southwest Jiaotong University,2015:21-22.