磁性核壳Fe_3O_4/P(GMA-DVB)-SH-Au复合催化剂的制备及催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and catalytic performance of magnetic core-shell structure Fe_3O_4/P(GMA-DVB)-SH-Au composite catalyst
  • 作者:马明亮 ; 杨玉莹 ; 吕平 ; 贾丽 ; 贾新城 ; 陈柳 ; 孔令运 ; 池丽凤
  • 英文作者:MA Ming-liang;YANG Yu-ying;LYU Ping;JIA Li;JIA Xin-cheng;CHEN Liu;KONG Ling-yun;CHI Li-feng;School of Civil Engineering,Qingdao University of Technology;
  • 关键词:功能材料 ; Fe_3O_4/P(GMA-DVB)-SH-Au核壳催化剂 ; 催化性能 ; 磁性分离 ; 循环利用
  • 英文关键词:functional materials;;core-shell Fe_3O_4/P(GMA-DVB)-SH-Au catalyst;;catalytic property;;magnetic separation;;recyclable catalyst
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:青岛理工大学土木工程学院;
  • 出版日期:2019-06-04 12:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.433
  • 基金:国家自然科学基金项目(51503116,51578298)
  • 语种:中文;
  • 页:CLGC201906008
  • 页数:7
  • CN:06
  • ISSN:11-1800/TB
  • 分类号:74-80
摘要
首先通过水热法合成了单分散空心Fe_3O_4磁球,之后利用蒸馏沉淀聚合将P(GMA-DVB)聚合物层包覆在Fe_3O_4磁球表面形成Fe_3O_4/P(GMA-DVB)核壳结构,巯基化处理后吸附Au纳米粒子,得到磁性核壳Fe_3O_4/P(GMA-DVB)-SH-Au复合催化剂。利用TEM,SEM,FTIR,XRD,TGA,VSM及UV-vis对其进行表征,并考察该催化剂在催化还原4-硝基苯酚反应中的催化性能。结果表明合成的材料粒径均匀,球形度规整,核壳结构明显,在催化反应中,Fe_3O_4/P(GMA-DVB)-SH-Au表现出优异的催化性能,而且经过连续8次循环使用后,催化效率仍可保持80%以上。
        In this work, monodisperse hollow Fe_3O_4 magnetic microspheres were synthesized by hydrothermal method. And the P(GMA-DVB) polymer layer was coated on the surface of Fe_3O_4 microspheres by distillation precipitation polymerization method to form core-shell structure. After adsorption of Au nanoparticles, a magnetic core-shell Fe_3O_4/P(GMA-DVB)-SH-Au supported catalyst was obtained. The morphologies, structures and catalytic performance of the catalysts were characterized by TEM, SEM, FTIR, XRD, TGA, VSM and UV-vis. Results show that the synthesized materials have uniform particle size, regular microsphere, and obvious core-shell struc-ture. For the catalytic reduction of 4-nitrophenol, the Fe_3O_4/P(GMA-DVB)-SH-Au exhibits excellent catalytic performance, and the catalytic efficiency still maintains over 80% after 8 successive cycles.
引文
[1] RICHARDSON S D,TERNES T A.Water analysis:emerging contaminants and current issues [J].Anal Chem,2018,90(1):398-428.
    [2] FENG J,SU L,MA Y,et al.CuFe2O4 magnetic nanoparticles:a simple and efficient catalyst for the reduction of nitrophenol [J].Chem Eng J,2013,221:16-24.
    [3] LAI B,CHEN Z,ZHOU Y,et al.Removal of high concentr-ation p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI) [J].J Hazard Mater,2013,250-251:220-228.
    [4] ZAREJOUSHEGHANI M,MODER M,BORSDORF H.A new strategy for synthesis of an in-tube molecularly imprinted polymer-solid phase microextraction device:selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples [J].Anal Chim Acta,2013,798:48-55.
    [5] HASSAN M,ZHAO Y,XIE B.Employing TiO2 photocatalysis to deal with landfill leachate:current status and development [J].Chem Eng J,2016,285:264-275.
    [6] JIANG Z,ZHU C,WAN W,et al.Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production [J].J Mater Chem A,2016,4(5):1806-1818.
    [7] DONG Z,LE X,DONG C,et al.Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodec-hlorination of 4-chlorophenol [J].Appl Catal B-Environ,2015,162:372-380.
    [8] LI C,CHEN G,SUN J,et al.Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water [J].Appl Catal B-Environ,2016,188:39-47.
    [9] WANG M L,JIANG T T,LU Y,et al.Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacr-ylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol [J].J Mater Chem A,2013,1 (19):5923-5933.
    [10] DAI B,LI X,ZHANG J,et al.Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination [J].Chem Eng Sci,2015,135:472-478.
    [11] WANG H,SHI Y,HARUTA M,et al.Aerobic oxidation of benzyl alcohol in water catalyzed by gold nanoparticles supported on imidazole containing crosslinked polymer [J].Appl Catal A-Gen,2017,536:27-34.
    [12] 王珍珍,翟尚儒,翟滨,等.基于对硝基苯酚还原模型反应的纳米金催化材料[J].化学进展,2014,26 (2/3):234-247.WANG Z Z,ZHAI S R,ZHAI B,et al.Preparation and catalytic properties of nano-Au catalytic materials based on the reduction of 4-nitrophenol [J].Prog Chem,2014,26 (2/3):234-247.
    [13] SHYLESH S,SCHUNEMANN V,THIEL W R.Magnetically separable nanocatalysts:bridges between homogeneous and heterogeneous catalysis [J].Angew Chem Int Edit,2010,49 (20):3428-3459.
    [14] ZHANG B,ZHANG H,FAN X,et al.Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N- isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein [J].J Colloid Interf Sci,2013,398:51-58.
    [15] CHEN Y,SONG B,LI M,et al.Fe3O4 Nanoparticles embed-ded in uniform mesoporous carbon spheres for superior high‐rate battery applications [J].Adv Funct Mater,2014,24(3):319-326.
    [16] TUO Y,LIU G,DONG B,et al.Microbial synthesis of Pd/Fe3O4,Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds [J].Sci Rep-UK,2015,5:13515.
    [17] ZHAO Y,YEH Y,LIU R,et al.Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst [J].Solid State Sci,2015,45:9-14.
    [18] LIU Y,LI C,ZHANG H,et al.One-pot hydrothermal synth-esis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals [J].Chem Eng J,2015,259:779-786.
    [19] 戴田霖,张艳梅,储刚,等.核-壳结构磁性金属有机骨架材料Fe3O4@UiO-66-NH2的合成、表征及催化性能[J].无机化学学报,2016,32 (4):606-619.DAI T L,ZHANG Y M,CHU G,et al.Core-shell magnetic microsphere Fe3O4@UiO-66-NH2:characterization and applic-ation as heterogeneous catalyst [J].Chinese J Inorg Chem,2016,32 (4):606-619.
    [20] MADDAH B,SABOURI A,HASANZADEH M.Magnetic solid-phase extraction of oxadiazon and profenofos from environ-mental water using magnetite Fe3O4@SiO2-C18 nanoparticles [J].J Polym Environ,2017,25 (3):770-780.
    [21] MEZGEBE M M,YAN Z,WEI G,et al.3D graphene-Fe3O4-polyaniline,a novel ternary composite for supercapacitor elect-rodes with improved electrochemical properties [J].Mater Today Energy,2017,5:164-172.
    [22] CHENG J,ZHAO S,GAO W,et al.Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B [J].React Kinet Mech Cat,2017,121 (2):797-810.
    [23] LI Z,JIA Z,NI T,et al.Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction [J].Appl Surf Sci,2017,426:160-168.
    [24] BAO F,TAN F,WANG W,et al.Facile preparation of Ag/Ni(OH)2 composites with enhanced catalytic activity for reduction of 4-nitrophenol [J].RSC Adv.2017,7 (23):14283-14289.
    [25] ZHANG W,SUN Y,ZHANG L.In situ synthesis of monodi-sperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol [J].Ind Eng Chem Res,2015,54 (25):6480-6488.
    [26] TANG S,VONGEHR S,MENG X.Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties [J].J Mater Chem,2010,20 (26):5436-5445.
    [27] ZHANG P,SHAO C,ZHANG Z,et al.In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol [J].Nanoscale,2011,3(8):3357-3363.