海洋时空基准网的进展与趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and Trends of Marine Space-Time Frame Network
  • 作者:刘经南 ; 陈冠旭 ; 赵建虎 ; 高柯夫 ; 刘焱雄
  • 英文作者:LIU Jingnan;CHEN Guanxu;ZHAO Jianhu;GAO Kefu;LIU Yanxiong;GNSS Research Center, Wuhan University;Collaborative Innovation Center of Geospatial Technology;School of Geodesy and Geomatics, Wuhan University;The First Institute of Oceanography, State Oceanic Administration;
  • 关键词:全球时空基准网 ; 海洋时空基准网 ; GNSS ; 海洋环境监测网 ; 海洋物联网 ; 海洋互联网
  • 英文关键词:global space-time frame network;;marine space-time frame network;;GNSS;;marine environment monitoring network;;marine internet of things;;marine internet
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:武汉大学卫星导航定位技术研究中心;地球空间信息技术协同创新中心;武汉大学测绘学院;国家海洋局第一海洋研究所;
  • 出版日期:2018-12-26 18:40
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:国家重点研发计划(2016YFB0501703);; 武汉市应用基础研究计划(2017010201010112);; 中国工程院重大咨询研究项目(2018-ZD-02-07);; 国家重大研发计划(2016YFB0501800);; 中国工程院重点咨询研究项目(2017-XZ-13)~~
  • 语种:中文;
  • 页:WHCH201901003
  • 页数:21
  • CN:01
  • ISSN:42-1676/TN
  • 分类号:20-40
摘要
全球时空基准网是获取地球时空信息的基础设施,它包括地基时空基准网、空间时空基准网和海洋时空基准网3个部分,其中海洋时空基准网的建设尚属起步阶段。先就海洋时空基准网的概念及内涵进行了分析,并从海洋定位导航基准、高精度海洋水平及垂直定位基准等角度介绍并分析了其发展现状及未来趋势。海洋时空基准网的主要构建方式是综合运用GNSS(Global Navigation Satellite System)卫星定位、水下声学定位以及压力传感器等技术将全球统一的时空基准传递到海洋表层、内部和底部。它的建设在我国还属于空白,故需结合国情、配合国家战略规划大力推进;指出当前全球和各国海洋环境监测的需求普遍甚旺,而现有海洋环境监测网多为局域网络,未与时空基准网融合,故海洋环境缓变或快变的时空位置不清楚或不精确,因此,将海洋时空基准网与海洋环境监测网融合起来建设,实现效益、效率和功能的互补提升,显得尤为重要和紧迫。在此基础上还认为,融合后的海洋时空基准网与环境监测网加上通信和数据交换功能,以实现海洋环境精准监测并进行海洋信息传输的目的,进而逐渐推进以形成具有时空位置属性的全球性海洋环境感知认知网络,即为海洋物联网。进一步探讨设想:将海洋物联网与海底通信光缆链接起来,同时通过海面浮标观测舱与通信卫星链接起来,就构成了有时空位置属性的海洋互联网。最后认为,我国应加快建立以中国周边海域为主的精密动态海洋时空基准和环境监测网,并通过国际合作开展全球性海洋时空基准与环境监测网的布设。
        Global space-time frame network is an infrastructure to acquire space-time information of the earth. It consists of three parts: ground, space and marine frame networks. Among them, the marine space-time frame network still sees its construction in an initial stage. This paper firstly defines the concept and connotation of marine space-time frame network and analyzes its development status quo and future trends from perspectives of marine positioning and navigation reference frame stations, and high-precision marine horizontal and vertical positioning reference frame stations. The major construction method of marine frame network is comprehensively utilizing GNSS(global navigation satellite system) positioning, underwater acoustic positioning and pressure sensor technologies to deliver the global unified space-time frame to surface layer, inside and bottom of the ocean. The construction of marine space-time frame network is still absent in China, so it should be pushed forward vigorously based on national realities and strategic planning. This paper points out: There is a universally great demand for global and national marine environment monitoring. However, the existing marine environment monitoring networks are mostly local networks and not integrated with space-time frame network, so space-time locations, changed slowly or rapidly, of marine environment cannot be clearly or accurately acquired. Therefore, it becomes imperative to integrate the construction of marine space-time frame network and marine environment monitoring network so as to achieve complementary improvement of benefits, efficiency and functions. Based on above mentioned, this paper deems that integrated marine frame network and marine environment monitoring network together with communication and data exchange functions can achieve the purpose of accurate marine environment monitoring and marine information transmission, and then with advancing gradually, global marine environment sensing and perceiving network with space-time location attributes i.e. Marine Internet of Things can be formed. Furthermore, this paper discusses assumptions: Marine Internet with space-time location attributes can be formed by linking Marine Internet of Things with seafloor communication cable and to communication satellites through buoy observation cabins on ocean surface. At last, this paper puts forward the opinion that China should accelerate its construction of a precise dynamic marine space-time frame and environment monitoring network that mainly focuses on its surrounding sea areas, and establish global marine space-time frame and environment monitoring network through conduction international cooperation.
引文
[1] Torge W, Müller J. Geodesy[M]. Berlin:Walter de Gruyter, 2012
    [2] Dhanak M R, Xiros N I. Springer Handbook of Ocean Engineering[M]. New York: Springer,2016
    [3] Zhou Li. A Precise Underwater Acoustic Positioning Method Based on Phase Measurement[D]. Victoria: University of Victoria, 2010
    [4] Peroutsea S, Doukakis E. Seafloor Geodetic Networks for Monitoring Tectonic Plate Motion and Deformation[J]. Journal of the Acoustical Society of America, 2008, 123(5): 3 900
    [5] Wang Pinxian. Seafloor Observation: The Third Platform for Earth System Observation[J].Chinese Journal of Nature, 2007, 29(3):125-130(汪品先. 从海底观察地球——地球系统的第三个观测平台[J]. 自然杂志, 2007, 29(3):125-130)
    [6] Sheikh A A, Felemban E, Felemban M, et al. Challenges and Opportunities for Underwater Sensor Networks[C]. The 12th International Conference on Innovations in Information Technology, Al-Ain, United Arab Emirates, 2016
    [7] Liu Yanxiong, Peng Lin, Wu Yongting, et al. Calibration of Transducer and Transponder Positions[J].Geomatics and Information Science of Wuhan University, 2006, 31(7):610-612(刘焱雄, 彭琳, 吴永亭,等. 超短基线水声定位系统校准方法研究[J]. 武汉大学学报·信息科学版, 2006, 31(7):610-612)
    [8] Zhao Jianhu, Wang Aixue. Precise Marine Surve- ying and Data Processing Technology and Their Progress of Application[J].Hydrographic Surve- ying and Charting, 2015, 35(6):1-7(赵建虎, 王爱学. 精密海洋测量与数据处理技术及其应用进展[J]. 海洋测绘, 2015, 35(6):1-7)
    [9] Wang Jiewen, Song Chunna, Hu Gang. Estimating Submarine Control Network Using LBL[J].Hydrographic Surveying and Charting,2015, 35(6):47-49(王杰文, 宋春娜, 胡岗. 基于LBL的海底管节施工局域控制网建立[J]. 海洋测绘, 2015, 35(6):47-49)
    [10] Kinsey J C, Eustice R M, Whitcomb L L. A Survey of Underwater Vehicle Navigation: Recent Advances and New Challenges[C].The 7th Conference on Maneuvering and Control of Marine Craft (MCMC 2006), IFAC, Lisbon, 2006
    [11] Zhao Jianhu, Lu Zhenbo, Wang Aixue. Development Status of Marine Surveying and Mapping Technology[J].Journal of Geomatics, 2017,42(6):1-10(赵建虎, 陆振波, 王爱学. 海洋测绘技术发展现状[J]. 测绘地理信息, 2017,42(6):1-10)
    [12] Gode T. Long Baseline Ranging Acoustic Positioning System[D]. Virginia: Virginia Polytechnic Institute and State University, 2015
    [13] Ning Jinsheng, Wu Yongting, Sun Dajun. The Development of LBL Acoustic Positioning System and Its Application[J].Hydrographic Surveying and Charting, 2014, 34(1): 72-75 (宁津生, 吴永亭, 孙大军. 长基线声学定位系统发展现状及其应用[J]. 海洋测绘, 2014, 34(1): 72-75)
    [14] Vickery K. Acoustic Positioning Systems: A Practical Overview of Current Systems[C].The Workshop on Autonomous Underwater Vehicles, Fort Lauderdale, Florida,USA, 1998
    [15] `Sliwka J, Petroccia R, Munafò A, et al. Experimental Evaluation of Net-LBL: An Acoustic Network-based Navigation System[C]. Oceans, IEEE, Aberdee,Scotland,2017
    [16] Crasta N, Moreno-Salinas D, Pascoal A M, et al. Range-Based Cooperative Underwater Target Loca- lization[J].IFAC Papers Online, 2017, 50(1): 12 366-12 373
    [17] Vio R P, Cristi R, Smith K B. UUV Localization Using Acoustic Communications, Networking, and a Priori Knowledge of the Ocean Current[C].Oceans, IEEE, Aberdeen, Scotland,2017
    [18] Xue Shuqiang, Yang Yuanxi. Nested Cones for Single-Point-Positioning Configuration with Minimal GDOP[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11):1 369-1 374(薛树强, 杨元喜. 最小GDOP定位构型的一种嵌套圆锥结构[J]. 武汉大学学报·信息科学版, 2014, 39(11):1 369-1 374)
    [19] Zou Yajing, Wang Chisheng, Zhu Jiasong, et al. Optimal Sensor Configuration for Positioning Seafloor Geodetic Node[J]. Ocean Engineering,2017, 142:1-9
    [20] Xu Peiliang, Ando M, Tadokoro K. Precise, Three-dimensional Seafloor Geodetic Deformation Measurements Using Difference Techniques[J]. Earth, Planets and Space, 2005, 57(9): 795-808
    [21] Wu Yongting. Study on Theory and Method of Precise LBL Positioning Software System[D]. Wuhan: Wuhan University, 2013(吴永亭. LBL 精密定位理论方法研究及软件系统研制[D]. 武汉: 武汉大学, 2013)
    [22] Xue Shuqiang, Yang Yuanxi, Dang Yamin, et al. Dynamic Positioning Configuration and Its First-order Optimization[J]. Journal of Geodesy, 2014, 88(2): 127-143
    [23] Zhao S, Chen B M, Tong H L. Optimal Sensor Placement for Target Localisation and Tracking in 2D and 3D[J]. International Journal of Control, 2013, 86(10): 1 687-1 704
    [24] Zhao Jianhu, Zou Yajing, Zhang Hongmei, et al. A New Method for Absolute Datum Transfer in Seafloor Control Network Measurement[J]. Journal of Marine Science and Technology, 2016, 21(2): 216-226
    [25] Zhao Jianhu, Zou Yajing, Wu Yongting, et al. Determination of Underwater Control Point Coordinate Based on Constraint of Water Depth[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 137-141 (赵建虎, 邹亚靖, 吴永亭, 等. 深度约束的海底控制网点坐标确定方法[J]. 哈尔滨工业大学学报, 2016, 48(10): 137-141)
    [26] Zhao Jianhu, Chen Xinhua, Wu Yongting, et al. Determination of Absolute Coordinate of Underwater Control Point Taking Waves and Depth’s Constraint into Account[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 413-421(赵建虎, 陈鑫华, 吴永亭, 等. 顾及波浪影响和深度约束的水下控制网点绝对坐标的精确确定[J]. 测绘学报, 2018, 47(3): 413-421)
    [27] Wu Fuping, Li Gun, Huang Xianhe. Study on a New Time Synchronization Method for Underwater Targets and Vehicles[C]. International Frequency Control Symposium, IEEE, Honolulu, HI, United States, 2008
    [28] Wang Yi. Research of Time-Synchronization and Localization in Underwater Wireless Sensor Networks[D]. Wuhan: Huazhong University of Science and Technology, 2009(王怿. 水下传感网时钟同步与节点定位研究[D]. 武汉: 华中科技大学, 2009)
    [29] Liu Hui, Zhang Rufei, Liu Jingnan, et al. Time Synchronization in Communication Networks Based on the BeiDou Foundation Enhancement System[J]. Science China: Technological Sciences, 2016, 59(1):9-15
    [30] Zhang Bo,Deng Yufen,Sun Lei, et al. Time Synchronization Technology for Ocean Survey Equipment Based on BeiDou[J]. Hydrographic Surve- ying and Charting, 2013, 33(4):69-71(张博, 邓玉芬, 孙磊,等. 基于北斗卫星的海洋调查测量系统时统技术[J]. 海洋测绘, 2013, 33(4):69-71)
    [31] Chadwell C D, Sweeney A D. Acoustic Ray-trace Equations for Seafloor Geodesy[J]. Marine Geodesy, 2010, 33(2-3): 164-186
    [32] Bürgmann R, Chadwell D. Seafloor Geodesy[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 509-534
    [33] Chadwell C D, Hildebrand J A, Spiess F N, et al. No Spreading Across the Southern Juan de Fuca Ridge Axial Cleft During 1994-1996[J]. Geophy- sical Research Letters, 1999, 26(16): 2 525-2 528
    [34] Fujimoto H, Koizumi K, Osada Y, et al. Development of Instruments for Seafloor Geodesy[J]. Earth, Planets and Space, 1998, 50(11-12): 905-911
    [35] Osada Y, Kido M, Fujimoto H. A Long-term Seafloor Experiment Using an Acoustic Ranging System: Precise Horizontal Distance Measurements for Detection of Seafloor Crustal Deformation[J]. Ocean Engineering, 2012, 51: 28-33
    [36] McGuire J J, Collins J A. Millimeter-level Precision in a Seafloor Geodesy Experiment at the Discovery Transform Fault, East Pacific Rise[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4 392-4 402
    [37] Sakic P, Piete H, Ballu V, et al. No Significant Steady State Surface Creep Along the North Anatolian Fault Offshore Istanbul: Results of 6 Months of Seafloor Acoustic Ranging[J]. Geophysical Research Letters, 2016, 43(13): 6 817-6 825
    [38] Spiess F N. Analysis of a Possible Seafloor Strain Measurement System[J]. Marine Geodesy, 1985, 9(4): 385-398
    [39] Sweeney A D, Chadwell C D, Hildebrand J A, et al. Centimeter-level Positioning of Seafloor Acoustic Transponders from a Deeply-towed Interrogator[J]. Marine Geodesy, 2005, 28(1): 39-70
    [40] Blum J A, Chadwell C D, Driscoll N, et al. Assessing Slope Stability in the Santa Barbara Basin, Cali- fornia, Using Seafloor Geodesy and CHIRP Seismic Data[J]. Geophysical Research Letters, 2010, 37:L13308
    [41] Spiess F N, Chadwell C D, Hildebrand J A, et al. Precise GPS/Acoustic Positioning of Seafloor Refe- rence Points for Tectonic Studies[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 101-112
    [42] Gagnon K L. Seafloor Geodetic Measurements and Modeling of Nazca-South America Plate Convergence[D].San Diego: University of California, 2007
    [43] Chadwell C D, Spiess F N. Plate Motion at the Ridge-Transform Boundary of the South Cleft Segment of the Juan de Fuca Ridge from GPS-Acoustic Data[J]. Journal of Geophysical Research: Solid Earth, 2008, 113:B04415
    [44] Gagnon K, Chadwell C D, Norabuena E. Measu- ring the Onset of Locking in the Peru-Chile Trench with GPS and Acoustic Measurements[J]. Nature, 2005, 434(7 030): 205
    [45] Obana K, Katao H, Ando M. Seafloor Positioning System with GPS-Acoustic Link for Crustal Dyna- mics Observation[J]. Earth, Planets and Space, 2000, 52(6): 415-423
    [46] Nakanishi M, Ogawa Y, Ogawa Y, et al. Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin[M]. Berlin,Heidelberg:Springer, 2011
    [47] Watanabe S, Sato M, Fujita M, et al. Evidence of Viscoelastic Deformation Following the 2011 Tohoku-Oki Earthquake Revealed from Seafloor Geodetic Observation[J]. Geophysical Research Letters, 2014, 41(16): 5 789-5 796
    [48] Yasuda K, Tadokoro K, Ikuta R, et al. Interplate Locking Condition Derived from Seafloor Geodetic Data at the Northernmost Part of the Suruga Trough, Japan[J]. Geophysical Research Letters, 2014, 41(16): 5 806-5 812
    [49] Sato M, Fujita M, Matsumoto Y, et al. InterplateCoupling off Northeastern Japan Before the 2011 Tohoku-Oki Earthquake, Inferred from Seafloor Geodetic Data[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(7): 3 860-3 869
    [50] Nishimura T, Sato M, Sagiya T. Global Positioning System (GPS) and GPS-Acoustic Observations: Insight into Slip Along the Subduction Zones Around Japan[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1):653-674
    [51] Fujita M, Ishikawa T, Mochizuki M, et al. GPS/Acoustic Seafloor Geodetic Observation: Method of Data Aanalysis and Its Application[J]. Earth, Planets and Space, 2006, 58(3): 265-275
    [52] Sato M, Fujita M, Matsumoto Y, et al. Improvement of GPS/Acoustic Seafloor Positioning Precision Through Controlling the Ship’s Track Line[J]. Journal of Geodesy, 2013, 87(9): 825-842
    [53] Yokota Y, Ishikawa T, Watanabe S, et al. Seafloor Geodetic Constraints on Interplate Coupling of the Nankai Trough Megathrust Zone[J]. Nature, 2016, 534(7 607): 374
    [54] Yokota Y, Ishikawa T, Sato M, et al. Heteroge- neous Interplate Coupling Along the Nankai Trough, Japan, Detected by GPS-Acoustic Seafloor Geodetic Observation[J]. Progress in Earth and Planetary Science, 2015, 2(1): 1-12
    [55] Watanabe S, Ishikawa T, Yokota Y. Non-volcanic Crustal Movements of the Northernmost Philippine Sea Plate Detected by the GPS-Acoustic Seafloor Positioning[J]. Earth, Planets and Space, 2015, 67(1): 184
    [56] Hashimoto M. International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)[C]. International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), Matsushima, Japan, 2014
    [57] Chadwick W W, Nooner S L, Zumberge M A, et al. Vertical Deformation Monitoring at Axial Seamount Since Its 1998 Eruption Using Deep-Sea Pressure Sensors[J]. Journal of Volcanology and Geothermal Research, 2006, 150(1): 313-327
    [58] Takahashi N, Ishihara Y, Ochi H, et al. New Buoy Observation System for Tsunami and Crustal Deformation[J]. Marine Geophysical Research,2014, 35(3): 243-253
    [59] Iannaccone G, Guardato S, Donnarumma G P, et al. Measurement of Seafloor Deformation in the Marine Sector of the Campi Flegrei Caldera (Italy)[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 66-83
    [60] Nooner S L, Webb S C, Buck W R, et al. Post Eruption Inflation of the East Pacific Rise at 9°50′N[J]. Geochemistry, Geophysics, Geosystems,2014, 15(6):2 676-2 688
    [61] Polster A, Fabian M, Villinger H. Effective Resolution and Drift of Paroscientific Pressure Sensors Derived from Long-term Seafloor Measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10:Q08008
    [62] Sasagawa G, Zumberge M A. A Self-calibrating Pressure Recorder for Detecting Seafloor Height Change[J]. IEEE Journal of Oceanic Enginee- ring, 2013, 38(3): 447-454
    [63] Gennerich H H, Villinger H. A New Concept for an Ocean Bottom Pressure Meter Capable of Precision Long-term Monitoring in Marine Geodesy and Oceanography[J]. Earth and Space Science, 2015, 2(5): 181-186
    [64] Phillips K A, Chadwell C D, Hildebrand J A. Vertical Deformation Measurements on the Submerged South Flank of KīlaueaVolcano, Hawaii Reveal Seafloor Motion Associated with Volcanic Collapse[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B5):1-15
    [65] Li Linyang, Lv Zhiping, Cui Yang. Summary of the Research Progress of Seafloor Geodetic Control Network[J].Bulletin of Surveying and Mapping, 2018 (1): 8-13(李林阳, 吕志平, 崔阳. 海底大地测量控制网研究进展综述[J]. 测绘通报, 2018 (1): 8-13)
    [66] Zhai Guojun, Huang Motao. The Review of Deve- lopment of Marine Surveying Technology[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10): 1 752-1 759(翟国君,黄谟涛.海洋测量技术研究进展与展望[J].测绘学报,2017,46(10):1 752-1 759)
    [67] Defense Advanced Research Projects Agency, Department of Defense Fiscal Year (FY) 2017 President’s Budget Submission. Research, Development, Test & Evaluation, Defense-Wide[EB/OL]. https://www.darpa.mil/attachments/DARPAFY17 PresidentsBudgetRequest.pdf, 2018
    [68] Wang Lufei, Li Fang. The USA is Going to Build Underwater GPS System[J].Defense Point, 2015(8): 62(王璐菲, 李方. 美国欲创建水下GPS系统[J]. 防务视点, 2015 (8): 62)
    [69] Yang Yuanxi, Xu Tianhe, Xue Shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J].Acta Geodactica et Cartographica Sinica, 2017,46(1):1-8(杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1):1-8)
    [70] Xu Jiangning. Analysis on Underwater PNT System and Key Technologies[J].Navigation Positioning and Timing, 2017,4(1):1-6(许江宁. 浅析水下PNT体系及其关键技术[J]. 导航定位与授时, 2017, 4(1):1-6)
    [71] Xu Wen, Yan Shefeng, Ji Fei, et al. Marine Information Gathering, Transmission, Processing, and Fusion: Current Status and Future Trends[J]. Scientia Sinica: Informationis, 2016, 46(8):1 053-1 085(徐文, 鄢社锋, 季飞,等. 海洋信息获取、传输、处理及融合前沿研究评述[J]. 中国科学:信息科学, 2016, 46(8):1 053-1 085)
    [72] Shanghai Ocean Science and Technology Research Center, State Key Laboratory of Marine Geology (Tongji University). Seafloor Observation: The Combination of Science and Technology[M]. Shanghai: Tongji University Press, 2011(上海海洋科技研究中心,海洋地质国家重点实验室(同济大学).海底观测:科学与技术的结合[M]. 上海:同济大学出版社, 2011)
    [73] Person R, Aoustin Y, Blandin J, et al. From Bottom Landers to Observatory Networks[J].Annals of Geophysics, 2006, 49(2-3): 581-593
    [74] Barnes C R, Best M M R, Johnson F R, et al. Challenges, Benefits, and Opportunities in Installing and Operating Cabled Ocean Observatories: Perspectives from NEPTUNE Canada[J].IEEE Journal of Oceanic Engineering, 2013, 38(1): 144-157
    [75] Favali P, Beranzoli L,de Santis A. Seafloor Obser- vatories: A New Vision of the Earth from the Abyss[M]. Berlin, Heidelberg: Springer, 2015
    [76] Zhu Junjiang, Sun Zongxun, Lian Shumin, et al. Review on Cabled Seafloor Observatories in the World[J]. Journal of Tropical Oceanography, 2017, 36(3): 20-33(朱俊江, 孙宗勋,练树民,等. 全球有缆海底观测网概述[J]. 热带海洋学报, 2017, 36(3):20-33)
    [77] Choi J K, Nishida S, Yokobiki T, et al. Automated Cable-Laying System for Thin Optical-Fiber Submarine Cable Installation[J].IEEE Journal of Oceanic Engineering, 2015, 40(4):981-992
    [78] Lü Feng, Zhou Huaiyang. Progress of Scientific Cabled Seafloor Observatory Networks[J]. Journal of Engineering Studies, 2016, 8(2):139-154(吕枫, 周怀阳. 缆系海底科学观测网研究进展[J]. 工程研究-跨学科视野中的工程, 2016, 8(2):139-154)
    [79] Kanazawa T. Japan Trench Earthquake and Tsunami Monitoring Network of Cable-linked 150 Ocean Bottom Observatories and Its Impact to Earth Disaster Science[C]. International Conference Underwater Technology Symposium, Tokyo, Japan, 2013
    [80] Tao Zhi. Analysis of Current Situation and Development of Submarine Observation Network[J].Acoustics and Electronics Engineering, 2014(4):45-49(陶智. 海底观测网络现状与发展分析[J]. 声学与电子工程, 2014(4):45-49)
    [81] Barnes C R, Tunnicliffe V. Building the World’s First Multi-node Cabled Ocean Observatories (NEPTUNE Canada and VENUS, Canada): Science, Realities, Challenges and Opportunities[C]. Oceans, IEEE, Quebec, Canada, 2008
    [82] State Key Laboratory of Marine Geology (Tongji University). International Progress in Seafloor Science Observation [M]. Shanghai: Tongji University Press, 2017(海洋地质国家重点实验室(同济大学). 海底科学观测的国际进展[M]. 上海:同济大学出版社, 2017)
    [83] Creed E L, Glenn S, Schofield O M, et al. LEO-15 Observatory—The Next Generation[C]. Oceans, IEEE, Washington D C, USA, 2005
    [84] Howe B M, Lukas R, Duennebier F, et al. ALOHA Cabled Observatory Installation[C]. Oceans, IEEE, Waikoloa, Kona, Hawaii, USA, 2011
    [85] Priede I G, Solan M, Mienert J, et al. Esonet-European Seafloor Observatory Network[C]. Oceans, IEEE, Kobe, Japan, 2004
    [86] Xu Huiping, Zhang Yanwei, Xu Changwei, et al. Coastal Seafloor Observatory at Xiaoqushan in the East China Sea[J]. Chinese Science Bulletin, 2011, 56(26): 2 839-2 845
    [87] Zhang Yanwei, Fan Daidu, Xu Huiping. Records of the Tsunami Induced by the 2010 Chilean Earthquake from Xiaoqushan Seafloor Observatory in the East China Sea[J]. Chinese Science Bulletin, 2011, 56(27): 2 957-2 965
    [88] Liu Fang. The Design and Implementation of Z2ERO Smart Ocean Observatory Information System[D]. Hangzhou: Zhejiang University, 2016(刘放. 摘箬山岛智能海洋观测网信息系统的设计与实现[D]. 杭州:浙江大学, 2016)
    [89] State Oceanic Administration, People’s Republic of China. National Ocean Observation Network Planning (2014—2020)[Z/OL]. http://www.soa.gov.cn/zwgk/zcgh/ ybjz/201412/t20141218_34581.html, 2018(中华人民共和国国家海洋局, 全国海洋观测网规划(2014—2020年)[Z/OL]. http://www.soa.gov.cn/zwgk/zcgh/ybjz/201412/t20141218_34581.html, 2018)
    [90] Luo Xuye, Zhou Zhihai, Cao Dong, et al. Designing Method for Integrated Ocean Environmental Monitoring System[J]. Marine Science Bulletin, 2006, 25(4):69-77(罗续业, 周智海, 曹东,等. 海洋环境立体监测系统的设计方法[J]. 海洋通报, 2006, 25(4):69-77)
    [91] Chen Lingxin. Marine Environmental Analysis and Monitoring Technologies[M]. Beijing: Science Press, 2018(陈令新.海洋环境分析监测技术[M]. 北京:科学出版社, 2018)
    [92] Hsiao N C, Lin T W, Hsu S K, et al. Improvement of Earthquake Locations with the Marine Cable Hosted Observatory (MACHO) Offshore NE Taiwan[J]. Marine Geophysical Research, 2014, 35(3): 327-336
    [93] Chen C F, Chan H C, Chang R I, et al. Data Demon- strations on Physical Oceanography and Underwater Acoustics from the Marine Cable Hosted Observatory (MACHO)[C]. Oceans, IEEE, Yeosu, Korea, 2012
    [94] Xu Shukun. Current Situation of the Cable Observation System of CWB and Study of Its Subsequent Expansion Evaluation[Z].Central Weather Bureau (Taiwan China), 2015(许树坤. 中央气象局海缆观测系统现况与后续扩充评估研究[Z]. 交通部中央气象局(中国台湾),2015)
    [95] Xinhua News Agency. China Will Build a National Seafloor Science Observation Network [EB/OL]. http://www.xinhuanet.com//2017-06/08/c_11 21111221.htm,2018 (新华通信社.我国将建设国家海底科学观测网[EB/OL]. http://www.xinhuanet.com//2017-06 /08/c_1121111221.htm,2018)
    [96] Domingo M C. An Overview of the Internet of Underwater Things[J]. Journal of Network and Computer Applications, 2012, 35(6): 1 879-1 890
    [97] Delaney J, Barga R. A 2020 Vision for Ocean Science [C]//Hey T, Tansley S, Tolle K. The Fourth Paradigm. Washington: Microsoft Research, 2009
    [98] Jaime L. Underwater Sensor Nodes and Networks[J]. Sensors, 2013, 13(9): 11 782-11 796
    [99] Cong Yanping. Research on Key Technology of Multi-mode Adaptive Underwater Wireless Communication Networks[D]. Qingdao: Ocean University of China, 2011(丛艳平. 多模式自适应水下无线通信网络关键技术研究[D]. 青岛: 中国海洋大学, 2011)
    [100] Pec R, Khan M S, Asim M, et al. Random Access for Underwater Acoustic Cellular Systems[J]. Sensors, 2018, 18(2):E432
    [101] Yang Guang. Research on Key Security Technology of Underwater Wireless Communication Networks[D]. Qingdao: Ocean University of China, 2012(杨光. 水下无线通信网络安全关键技术研究[D]. 青岛: 中国海洋大学, 2012)
    [102] Shostack A. Threat Modeling: Designing for Security [M]. New York: Wiley, 2014