不同密度杨树人工林河岸缓冲带对无机氮的去除效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of the poplar plantation riparian buffer strips with different densities on the removal rate of inorganic nitrogen
  • 作者:吕建 ; 吴永波 ; 余昱莹 ; 茆安敏 ; 陈欢
  • 英文作者:Lü Jian;WU Yongbo;YU Yuying;MAO Anmin;CHEN Huan;Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University;Institute of Botany, Jiangsu Province and Chinese Academy of Sciences;
  • 关键词:杨树人工林缓冲带 ; 林分密度 ; 去除率 ; 铵态氮 ; 硝态氮
  • 英文关键词:poplar plantation riparian buffer strip;;stand density;;removal rate;;NH_4~+—N;;NO_3~-—N
  • 中文刊名:STKX
  • 英文刊名:Ecological Science
  • 机构:江苏省南方现代林业协同创新中心(南京林业大学);江苏省中国科学院植物研究所;
  • 出版日期:2019-04-28 18:18
  • 出版单位:生态科学
  • 年:2019
  • 期:v.38;No.140
  • 基金:国家重点研发计划(2016YFC0502704);; 国家林业局“948”项目(2013-4-63);; 江苏省生物学优势学科建设项目资助
  • 语种:中文;
  • 页:STKX201902019
  • 页数:9
  • CN:02
  • ISSN:44-1215/Q
  • 分类号:149-157
摘要
以太湖流域构建的平缓坡度杨树人工林河岸缓冲带为研究对象,比较了三种植物密度(400株·hm~(-2)、1000株·hm~(-2)和1600株·hm~(-2))的河岸缓冲带对不同深度径流水中铵态氮(NH_4~+—N)和硝态氮(NO_3~-—N)的去除率以及河岸缓冲带土壤对铵态氮和硝态氮的截留率。研究结果表明,1600株·hm~(-2)杨树人工林缓冲带对径流水中铵态氮和硝态氮的去除能力最强,在40 m缓冲带处三个土层的平均去除率达72.86%和71.81%,而400株·hm~(-2)缓冲带去除效果较差;在同一土层,土壤铵态氮的截留率大小随土壤铵态氮浓度的增加而提高。1000株·hm~(-2)杨树人工林缓冲带土壤对铵态氮和硝态氮截留效果最好,截留率为32.48%和44.41%, 1600株·hm~(-2)缓冲带其次, 400株·hm~(-2)缓冲带的截留率较低。
        In this study, the removal rates and resistance rates for selected inorganic nitrogen species(NH_4~+—N and NO_3~-—N) at poplar plantation riparian buffer strips(RBS) with three planting densities(400, 1000, and 1600 stems· hm~(-2)) were investigated. The results showed that the removal effect of NH_4~+—N and NO_3~-—N in runoff water in the higher density(1600 stems· hm~(-2)) RBS was the highest, with the average removal rates of 72.86% and 71.81%, respectively. The removal rates in the lower density(400 stems· hm~(-2)) RBS were the lowest. For the same soil layer, the resistance rate for NH_4~+—N increased with the increase in concentration of NH_4~+—N in the soil. The resistance rates for NH_4~+—N and NO_3~-—N in the middle density(1000 stems· hm~(-2)) RBS soil were the highest, with the average resistance rates of 32.48% and 44.41%,respectively. The resistance rate in the lower density RBS were the lowest.
引文
[1]周敏,刘正文.氮、磷对热带浅水湖泊惠州西湖蓝藻的控制[J].生态科学,2012,31(2):115-120.
    [2]XU H,PAERL H W,QIN B,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology&Oceanography,2010,55(1):420-432.
    [3]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [4]余红兵.生态沟渠水生植物对农区氮磷面源污染的拦截效应研究[D].长沙:湖南农业大学,2012.
    [5]薛峰,颜廷梅,乔俊,等.太湖地区稻田减量施肥的环境效益和经济效益分析[J].生态与农村环境学报,2009(4):26-31,51.
    [6]夏立忠,杨林章.太湖流域非点源污染研究与控制[J].长江流域资源与环境,2003,12(1):45-49.
    [7]余辉,燕姝雯,徐军.太湖出入湖河流水质多元统计分析[J].长江流域资源与环境,2010,19(6):696-702.
    [8]成刚.太湖氮营养盐的分布特征及区域差异性研究[D].兰州:兰州大学,2010.
    [9]WEISSTEINER C J,BOURAOUI F,ALOE A.Reduction of nitrogen and phosphorus loads to European rivers by riparian buffer zones[J].Knowledge and Management of Aquatic Ecosystems,2013,408(8):1-15.
    [10]刘璐,李继明,柯凡,等.高位湖滩湿地在农业面源污染河水中的应用[J].安徽农业科学,2018(19):83-87.
    [11]WU L,OSMOND D L,GRAVES A K,et al.Relationships between nitrogen transformation rates and gene abundance in a riparian buffer soil[J].Environmental management,2012,50(5):861-874.
    [12]程昌锦,丁霞,胡璇,等.滨水植被缓冲带水质净化研究[J].世界林业研究,2018,31(04):13-17.
    [13]高馨婷.城乡结合部生态缓冲带不同群落配置模式的生态服务研究[D].北京:中国环境科学研究院,2011.
    [14]吴永波.河岸植被缓冲带减缓农业面源污染研究进展[J].南京林业大学学报(自然科学版),2015(3):143-148.
    [15]张鹏.不同宽度竹林河岸缓冲带对氮磷的截留转化效率[D].北京:中国林业科学研究院,2010.
    [16]卜晓莉,王利民,薛建辉.湖滨林草复合缓冲带对泥沙和氮磷的拦截效果[J].水土保持学报.2015,29(4):32-36.
    [17]李世锋.关于河岸缓冲带拦截泥沙和养分效果的研究[J].水土保持科技情报,2003(6):41-43.
    [18]宋思铭.河岸缓冲带净水效果及优化配置技术研究[D].北京:北京林业大学,2012.
    [19]编委会国家环境保护总局水和废水监测分析方法.水和废水监测分析方法[M].中国环境出版社,2013.
    [20]DOSSKEY M G.Toward quantifying water pollution abatement in response to installing buffers on crop land[J].Environmental Management,2001,28(5):577-598.
    [21]NGUYEN M L,MATHESON F E,COOPER A B,et al.Short-term nitrogen transformation rates in riparian wetland soil determined with nitrogen-15[J].Biology and Fertility of Soils,2003,38(3):129-136.
    [22]YOUNG R A,HUNTRODS T,ANDERSON W.Effectiveness of vegetated buffer strips in controlling pollution from feedlot runoff[J].Journal of Environmental Quality,1980,9(3):483-487.
    [23]李瑞玲,张永春,刘庄,等.太湖缓坡丘陵地区雨强对农业非点源污染物随地表径流迁移的影响[J].环境科学,2010,31(5):1221-1223.
    [24]白军红,邓伟,朱颜明,等.洪泛区湿地土壤有机质和氮素的空间分布特征[J].环境科学,2002,23(2):77-81.
    [25]白军红,欧阳华,邓伟,等.向海沼泽湿地土壤氮素的空间分布格局[J].地理研究,2004,23(5):614-622.
    [26]白军红,王庆改.向海沼泽湿地土壤氮素分布特征及生产效应研究[J].土壤通报,2002,33(2):113-116.
    [27]周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996(3):232-241.
    [28]孟亦奇,吴永波,朱颖,等.利用河岸缓冲带去除径流水中氮的研究[J].湿地科学,2016(4):532-537.
    [29]WENGER S.A review of the scientific literature on riparian buffer width,extent and vegetation[D].Athens,Georgia,1999.
    [30]PETERJOHN W T and CORRELL D L.Nutrient dynamics in an agricultural watershed:Observations on the role of a riparian forest[J].Ecology,1984,65(5):1466-1475.