光照强度对虎斑乌贼生长、存活、代谢及相关酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of light intensity on growth, survival, metabolism and related enzyme activities of Sepia pharaonis
  • 作者:周爽男 ; 陈奇成 ; 江茂旺 ; 蒋霞敏 ; 彭瑞冰 ; 韩庆喜 ; 黄晨 ; 赵晨曦 ; 李建平
  • 英文作者:ZHOU Shuang-nan;CHEN Qi-cheng;JIANG Mao-wang;JIANG Xia-min;PENG Rui-bing;HAN Qing-xi;HUANG Chen;ZHAO Chen-xi;LI Jian-ping;School of Marine Sciences, Ningbo University;
  • 关键词:光照强度 ; 生长 ; 存活 ; 虎斑乌贼
  • 英文关键词:light intensity;;growth;;survival;;Sepia pharaonis
  • 中文刊名:YYSB
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:宁波大学海洋学院;
  • 出版日期:2019-06-15
  • 出版单位:应用生态学报
  • 年:2019
  • 期:v.30
  • 基金:浙江省海洋与渔业项目(浙海渔计2013[82]号);; 宁波市农业重大专项(2014C11001);; 宁波市富民项目(2017C10006)资助~~
  • 语种:中文;
  • 页:YYSB201906034
  • 页数:7
  • CN:06
  • ISSN:21-1253/Q
  • 分类号:279-285
摘要
采用单因子试验方法,分析了不同光照强度(10、30、50、70、90μmol·m~(-2)·s~(-1))下虎斑乌贼特定生长率、存活率、耗氧率、排氨率、肌肉中乳酸含量,以及呼吸代谢酶(己糖激酶、丙酮酸激酶、乳酸脱氢酶)、肝脏中超氧化物歧化酶活性和丙二醛含量变化.结果表明:随着光照强度的增强,虎斑乌贼的特定生长率和存活率均呈现先稳定后逐渐下降的趋势,10和30μmol·m~(-2)·s~(-1)组之间差异不明显,但显著高于其他组,10和30μmol·m~(-2)·s~(-1)光照条件下的特定生长率分别为(8.43±0.22)和(8.47±0.17)%·d~(-1),存活率分别为(79.2±5.9)%和(80.0±4.9)%;耗氧率和排氨率随着光照强度的增强呈现先缓后急的上升趋势,在光照强度为90μmol·m~(-2)·s~(-1)条件下达到最大值,且显著高于其他组,肌肉中乳酸含量则呈现先降低后上升的趋势,10μmol·m~(-2)·s~(-1)组的乳酸含量与30和50μmol·m~(-2)·s~(-1)组无显著性差异,但显著低于其他两组;随着光照强度的增强,鳃中己糖激酶和丙酮酸激酶活性先稳定后逐渐降低,在光照强度为10和30μmol·m~(-2)·s~(-1)条件下活性最高,且显著高于其他组,肌肉中乳酸脱氢酶活性则在这两种光照强度下活性最低,且显著低于其他组;超氧化物歧化酶活性随着光照强度的增强呈现先升高后下降的趋势,在70μmol·m~(-2)·s~(-1)光照强度下活性最高,且显著高于其他组,为(104.93±4.17) U·mg~(-1)pro,丙二醛含量随光照强度的增强先稳定后逐渐增加,在光照强度为90μmol·m~(-2)·s~(-1)时含量最高,且显著高于其他组,为(5.06±0.35) nmol·mg~(-1) pro.表明10和30μmol·m~(-2)·s~(-1)条件下虎斑乌贼生长、存活和代谢水平处于最佳状态,适用于规模化养殖,一旦超过此范围,光照越强,受到的胁迫越大,越不适合于乌贼生长与存活.在实际养殖过程中要避免太阳光直射,做好遮光措施.
        An experiment with single-factor design was conducted to investigate the effects of light intensity on growth and survival of cuttlefish(Sepia pharaonis). The specific growth rate, survival rate, oxygen consumption rate, ammonia excretion rate, lactic acid content in muscle, respiratory metabolic enzymes(including hexokinase, pyruvate kinase, and lactate dehydrogenase), supero-xide dismutase, and malondialdehyde in liver were measured in five constant light intensity treatments(10, 30, 50, 70, 90 μmol·m~(-2)·s~(-1)). The main results were as follows: The specific growth rate and survival rate remained steady initially and then decreased gradually with the increases of light intensity. There was no significant difference between groups 10 and 30 μmol·m~(-2)·s~(-1), but they were significantly higher than those of the other groups. Exposed to light intensities of 10 and 30 μmol·m~(-2)·s~(-1), the specific growth rates were(8.43±0.22)%·d~(-1) and(8.47±0.17)%·d~(-1), and the survival rates were(79.2±5.9)% and(80.0±4.9)%, respectively. Oxygen consumption rates and ammonia excretion rates increased first slowly and then sharply, and reached the maximum value when light intensity was 90 μmol·m~(-2)·s~(-1), which was significantly higher than those of the other groups. Lactic acid content in muscle firstly decreased and then increased, with the minimum value at 30 μmol·m~(-2)·s~(-1). The acid content of 10 μmol·m~(-2)·s~(-1)was significantly lower than those of the other groups except 30 and 50 μmol·m~(-2)·s~(-1). With the increases of light intensity, the activities of HK and PK in gills remained steady initially and then decreased gradually, and reached the highest level when exposed to 10 and 30 μmol·m~(-2)·s~(-1), which were significantly higher than those of the other groups. LDH activity in muscle had the lowest level at the light intensity of 10 and 30 μmol·m~(-2)·s~(-1), which was significantly lower than those of the other groups. SOD activity in liver firstly increased and then decreased, and reached the highest level((104.93±4.17) U·mg~(-1)pro) when exposed to 70 μmol·m~(-2)·s~(-1), which was significantly higher than those of the other groups. MDA content in liver first remained steady and then increased gradually, and reached the highest level((5.06±0.35) nmol·mg~(-1)pro) when exposed to 90 μmol·m~(-2)·s~(-1), which was significantly higher than those of the other groups. In conclusion, the optimum light intensities for growth, survival and metabolism of S. pharaonis were 10 and 30 μmol·m~(-2)·s~(-1), beyond which S. pharaonis would be under stress. Therefore, sunproof measures should be taken to keep weak light condition in culture practice.
引文
[1] Nabhitabhata J,Nilaphat P.Life cycle of cultured pha-raoh cuttlefish,Sepia pharaonis Ehrenberg,1831.Phuket Marine Biological Center Special Publication,1999,19:25-40
    [2] Le K-X (乐可鑫),Wang Y (汪元),Peng R-B (彭瑞冰),et al.Effects of starvation and re-feeding on survival rate,growth and digestive enzyme activities of juvenile Sepia pharaonis.Chinese Journal of Applied Ecology (应用生态学报),2016,27(6):2002-2008 (in Chinese)
    [3] Wang P-S (王鹏帅),Jiang X-M (蒋霞敏),Ruan P (阮鹏),et al.Oxygen consumption rate of Sepia pharaonis embryos.Chinese Journal of Applied Ecology (应用生态学报),2016,27(7):2357-2362 (in Chinese)
    [4] Budelmann BU.The cephalopod nervous system:What evolution has made of the molluscan design//Breidbach O,Kutsch W,eds.The Nervous Systems of Invertebrates:An Evolutionary and Comparative Approach.Berlin:Springer,1995:115-138
    [5] Le K-X (乐可鑫),Jiang X-M (蒋霞敏),Wang Y (汪元),et al.Salinity effects on growth and enzyme activity of juvenile Sepia pharaonis.Journal of Tropical Oceanography (热带海洋学报),2015,34(6):64-72 (in Chinese)
    [6] Le K-X (乐可鑫),Jiang X-M (蒋霞敏),Peng R-B (彭瑞冰),et al.Effects of four ecological factors on the growth and survival of Sepia pharaonis larvae.Journal of Biology (生物学杂志),2014,31(4):33-37 (in Chinese)
    [7] Wen J (文菁),Cao G-R (曹观蓉),Li S-Y (李施颖),et al.Effects of environmental factors on survival and behavior in juvenile cuttlefish Sepia pharaonis.Fishe-ries Science (水产科学),2011,30(6):321-324 (in Chinese)
    [8] Wang P-S (王鹏帅),Jiang X-M (蒋霞敏),Han Q-X (韩庆喜),et al.Effects of salinity and temperature on the oxygen consumption,ammonia excretion rates and suffocation threshold of different sizes of juvenile Sepia pharaonis.Acta Hydrobiologica Sinica (水生生物学报),2017,41(5):1027-1035 (in Chinese)
    [9] Peng RB,Le KX,Wang PS,et al.Detoxification pathways in response to environmental ammonia exposure of the cuttlefish,Sepia pharaonis:Glutamine and urea formation.Journal of the World Aquaculture Society,2017,48:342-352
    [10] Ruan P (阮鹏),Jiang X-M (蒋霞敏),Han Q-X (韩庆喜),et al.Effects of social hierarchy on the growth,survival and related enzyme activities of Sepia pharaonis.Journal of Fisheries of China (水产学报),2016,40(12):1897-1905 (in Chinese)
    [11] Wang S-J (王双健),Ding Y-H (丁玉惠),Zhou S-N (周爽男),et al.Effects of ink-jetting and stripping on hatch and larval survival of the fertilized egg of Sepia pharaonis.Journal of Fisheries of China (水产学报),2017,41(3):366-373 (in Chinese)
    [12] Boeuf G,Bail PYL.Does light have an influence on fish growth?Aquaculture,1999,177:129-152
    [13] Zhou X-Q (周显青),Niu C-J (牛翠娟),Li Q-F (李庆芬),et al.The effects of light intensity on daily food consumption and specific growth rate of the juvenile soft-shelled turtle,Trionyx sinensis.Acta Zoologica Sinica (动物学报),2000,44(2):157-161 (in Chinese)
    [14] Zhou X-Q (周显青),Niu C-J (牛翠娟),Li Q-F (李庆芬).Effects of light on feeding behavior,growth and survival of aquatic animals.Acta Hydrobiologica Sinica (水生生物学报),2000,24(2):178-181 (in Chinese)
    [15] Vera LM,Migaud H.Continuous high light intensity can induce retinal degeneration in Atlantic salmon,Atlantic cod and European sea bass.Aquaculture,2009,296:150-158
    [16] Zhou S-N (周爽男),Lyu T-T (吕腾腾),Chen Q-C (陈奇成),et al.Effects of light intensity and photoperiod on the embryonic development of Sepia pharaonis.Chinese Journal of Applied Ecology (应用生态学报),2018,29(6):2059-2067 (in Chinese)
    [17] Serb JM,Eernisse DJ.Charting evolution’s trajectory:Using molluscan eye diversity to understand parallel and convergent evolution.Evolution Education and Outreach,2008,1:439-447
    [18] Groeger G,Cotton PA,Williamson R.Ontogenetic changes in the visual acuity of Sepia officinalis measu-red.Revue Canadienne De Zoologie,2005,83:274-279
    [19] Groeger G,Chrachri A,Williamson R.Changes in cuttlefish retinal sensitivity during growth.Vie Et Milieu-Life and Environment,2006,56:167-173
    [20] Douglas RH,Williamson R,Wagner HJ.The pupillary response of cephalopods.Journal of Experimental Biology,2005,208:261-265
    [21] Sykes AV,Quintana D,Andrade JP.The effects of light intensity on growth and survival of cuttlefish (Sepia officinalis) hatchlings and juveniles.Aquaculture Research.2014,45:2032-2040
    [22] Feng X (冯雪),Chen P-M (陈丕茂),Qin C-X (秦传新),et al.Influence of different temperature and body weight on Octopus vulgaris respiratory metabolism in the South China Sea.Journal of Fishery Sciences of China (中国水产科学),2013,20(5):968-974 (in Chinese)
    [23] Wang C-L (王春琳),Wu D-H (吴丹华),Dong T-Y (董天野),et al.Oxygen consumption rate and effects of hypoxia stress on enzyme activities of Sepiella maindroni.Chinese Journal of Applied Ecology (应用生态学报),2008,19(11):2420-2427 (in Chinese)
    [24] Hemre G,Mommsen TP,Krogdahl ?.Carbohydrates in fish nutrition:Effects on growth,glucose metabolism and hepatic enzymes.Aquaculture Nutrition,2002,8:175-194
    [25] Walzem RL,Storebakken T,Hung SS,et al.Relationship between growth and selected liver enzyme activities of individual rainbow trout.Journal of Nutrition,1991,121:1090-1098
    [26] Wang X (王馨),Wang F (王芳),Lu Y-L (路允良),et al.Effects of light intensity on the respiratory metabolism of swimming crab (Portunus trituberculatus).Journal of Fisheries of China (水产学报),2014,38(2):237-243 (in Chinese)
    [27] Rudneva II.Blood antioxidant system of Black Sea elasmobranch and teleost.Comparative Biochemistry and Physiology Part C:Pharmacology,Toxicology and Endocrinology,1997,118:255-260
    [28] Pelster B,Giacomin M,Wood CM,et al.Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish,jeju,compared to a non-air-breathing close relative,traira.Journal of Comparative Physiology Part B:Biochemical,Systemic and Environmental Physiology,2016,186:615-624
    [29] Pascual P,Pedrajas JR,Toribio F,et al.Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata).Chemico-biological Interactions,2003,145:191-199
    [30] Narisawa S,Hofmann MC,Ziomek CA,et al.Embryonic alkaline phosphatase is expressed at M-phase in the spermatogenic lineage of the mouse.Development,1992,116:159-165
    [31] Grundy JE,Storey KB.Antioxidant defenses and lipid peroxidation damage in estivating toads,Scaphiopus couchii.Journal of Comparative Physiology Part B:Biochemical,Systemic and Environmental Physiology,1998,168:132-142