离子液体/季铵盐辅助氯过氧化物酶促氧化合成聚酚
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enzymatic Polymerization of Phenols Catalyzed by Chloroperoxidase in the Presence of Ionic Liquids/Quaternary Ammonium Salts
  • 作者:王圣洁 ; 刘丽霞 ; 蒋育澄 ; 胡满成 ; 李淑妮 ; 翟全国
  • 英文作者:WANG Shengjie;LIU Lixia;JIANG Yucheng;HU Mancheng;LI Shuni;ZHAI Quanguo;School of Chemistry & Chemical Engineering,Shaanxi Normal University;Key Laboratory of Macromolecular Science of Shaanxi Province,Shaanxi Normal University;
  • 关键词:氯过氧化物酶 ; 聚苯酚 ; 离子液体/季铵盐 ; 底物结构 ; 反应微环境
  • 英文关键词:Chloroperoxidase;;Polyphenol;;Ionic liquid/Quaternary ammonium salt;;Structure of substrate;;Reaction microenvironment
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:陕西师范大学化学化工学院;陕西师范大学大分子科学陕西省重点实验室;
  • 出版日期:2016-09-10
  • 出版单位:高等学校化学学报
  • 年:2016
  • 期:v.37
  • 基金:国家自然科学基金(批准号:21176150);; 中央高校专项基金(批准号:GK201505007)资助~~
  • 语种:中文;
  • 页:GDXH201609022
  • 页数:7
  • CN:09
  • ISSN:22-1131/O6
  • 分类号:153-159
摘要
基于氯过氧化物酶(CPO)催化氧化苯酚衍生物单体,建立了一个聚酚的绿色合成体系.以对苯基苯酚、对甲基苯酚、4-乙基苯酚、对羟基肉桂酸、对异丙基苯酚和邻甲基苯酚等6种底物为考察对象,以聚合物的产率、聚合度及热稳定性为评价指标,研究了体系中引入离子液体(ILs)或季铵盐(QAS)以及底物结构和反应微环境等对聚合反应和聚合物性质的影响.结果表明,引入少量咪唑类ILs或QAS可有效提高产物收率,其中ILs/QAS的阳离子基团越大和疏水链越短,越有利于酶催化聚合反应的进行;而ILs/QAS添加量的影响则呈现"钟罩"型规律.同时,苯酚对位取代远比邻位取代有利于聚合反应进行;而对位取代基中烷基类给电子基团比芳香基取代更有优势,所得聚合物的聚合度和热稳定性相对增大,但随着取代基团的增大,其空间位阻不利于聚合物产率的提高;反应体系的p H应控制在弱酸性至近中性,以避免竞争性的副反应的发生;而氧化剂H_2O_2则需要采用间歇式加入以抑制瞬时过浓导致CPO活性中心卟啉环的氧化损伤.基于CPO的活性中心结构分析了聚合机理.
        A green enzymatic approach for the synthesis of phenol polymersfrom substituted phenols monomer by chloroperoxidase( CPO)-catalyzed H_2O_2-oxidation was proposed in this paper. The yield and thermal stability of polymers of p-methyl phenol,p-ethyl phenol,p-propyl phenol,p-phenyl phenol and p-hydroxy-cinnamic acid were studied based on the presence of imidazolium-based ionic liquids( ILs) or quaternary ammonium salts( QAS),the effect of structure of the substrates and the reaction microenvironment. The results showed that the introduction of little amount of ILs/QAS can improve the production of polymerization of phenols efficiently,in which ILs/QAS with bigger cation group and shorter hydrophobic chain was much more effective,while the influence of ILs/QAS amount on polymerization of phenols showed a "ball type"pattern. Moreover,it was found that p-substituted phenol and electron-donating group were more beneficial to the increase of yield and thermal stability of phenol polymers compared to o-substituted phenol and electron-withdrawing group.However,the steric hindrance was increased with the increasing size of substituent group,which was not beneficial to the polymerization of phenols. The p H value should be controlled as weak acid or even near-neutral to avoid competitive side reaction,while the adding of H_2O_2 should be in a batch type to suppress the oxidative damage of heme caused by the instantaneous concentrated H_2O_2. The mechanism of polymerization was also analyzed and proposed based on the characteristics of structure of CPO active site.
引文
[1]Guo L.Y.,Zhang B.,Bai S.Y.,Ma X.Y.,Wang Z.M.,E-Polymers,2015,15,195—201
    [2]Raj M.M.,Raj L.M.,Shah T.B.,Patel P.M.,J.Therm.Anal.Calorim.,2010,101,1003—1009
    [3]Shafizadeh J.E.,Guionnet S.,Tillman M.S.,Seferis J.C.,J.Appl.Polym.Sci.,1999,73,505—514
    [4]Wang W.B.,Zhao Z.Y.,Gao Z.H.,Guo M.G.,BioResources,2012,7,1972—1983
    [5]Greenblatt M.,Lab.Med.,1988,19(7),425—428
    [6]Eker B.,Zagorevski D.,Zhu G.Y.,Linhardt R.J.,Dordick J.S.,J.Mol.Catal.B:Enzym.,2009,59,177—184
    [7]Shogren R.L.,Willett J.L.,Biswas A.,Carbohydr.Polym.,2009,75,189—191
    [8]Reihmann M.H.,Ritter H.,Macromol.Biosci.,2001,1,85—90
    [9]Shumakovich G.,Otrokhov G.,Vasil'eva I.,Pankratov D.,Morozova O.,Yaropolov A.,J.Mol.Catal.B:Enzym.,2012,81,66—68
    [10]Tan Y.,Deng W.F.,Li Y.Y.,Huang Z.,Meng Y.,Xie Q.J.,Ma M.,Yao S.Z.,J.Phy.Chem.B,2010,114(15),5016—5024
    [11]Zhang R.,He Q.,Chatfield D.,Wang X.,Biochem.,2013,52(21),3688—3701
    [12]Wang Y.L.,Nie Y.Y.,Jiang Y.C.,Hu M.C.,Li S.N.,Zhai Q.G.,Chem.J.Chinese Universities,2012,33(6),1344—1349(王亚丽,聂艳艳,蒋育澄,胡满成,李淑妮,翟全国.高等学校化学学报,2012,33(6),1344—1349)
    [13]Nie Y.Y.,Jiang Y.C.,Hu M.C.,Li S.N.,Zhai Q.G.,Acta Chimica Sinica,2010,68(10),982—988(聂艳艳,蒋育澄,胡满成,李淑妮,翟全国.化学学报,2010,68(10),982—988)
    [14]Manoj K.M.,BBA-Proteins Proteom,2006,1764,1325—1339
    [15]Sundaramoorthy M.,Terner J.,Poulos T.L.,Structure(London),1995,3,1367—1377
    [16]Sundaramoorthy M.,Terner J.,Poulos T.L.S.,Chem.Biol.,1998,5,461—473
    [17]Longoria A.M.,Hu H.L.,Vazquez-Duhalt R.,Appl.Biochem.Biotechnol.,2010,162,927—934
    [18]Roman P.,Cruz-Silva R.,Vazquez-Duhalt R.,Synthetic Met.,2012,162,794—799
    [19]Morris D.R.,Hager L.P.,J.Biol.Chem.,1966,241(8),1763—1768
    [20]Jan R.,Rather G.M.,Bhat M.A.,J.Solution.Chem.,2014,43,685—695
    [21]Gorke J.,Srienc F.,Kazlauskas R.,Biotechnol.Bioproc.E.,2010,15,40—53
    [22]Jin R.X.,Li C.N.,Zhi L.F.,Jiang Y.C.,Hu.M.C.,Li.S.N.,Zhai Q.G.,Carbohydr.Res.,2013,370,72—75
    [23]Sheng X.,Horner J.H.,Newcomb M.,J.Am.Chem.Soc.,2008,130,13310—13320
    [24]Dordick J.S.,Marletta M.A.,Klibanov A.M.,Biotechnol.Bioeng.,1987,30,31—36
    [25]Akkara J.A.,Senecal K.J.,Kaplan D.L.,J.Polym.Sci.:Part A,Polym.Chem.,1991,29,1561—1547
    [26]Kim Y.J.,Uyama H.,Kobayashi S.,Macromolecules,2003,36,5058—5060
    [27]Hager L.P.,J.Biol.Chem.,2010,285,14852—14860