普通混凝土基本受力形态动力性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on the Dynamic Behavior of Ordinary Concrete Under Basic Force
  • 作者:李富荣 ; 余振鹏 ; 孙厚超
  • 英文作者:LI Furong;YU Zhenpeng;SUN Houchao;College of Civil Engineering, Yancheng Institute of Technology;School of Transportation, Southeast University;
  • 关键词:普通混凝土 ; 受压 ; 劈拉 ; 受剪 ; 动力性能
  • 英文关键词:ordinary concrete;;compression;;splitting;;shearing;;dynamic performance
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:盐城工学院土木工程学院;东南大学交通学院;
  • 出版日期:2019-06-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:水利部土石坝破坏机理与防控技术重点实验室开放基金(YK319010);; 江苏省高等学校自然科学研究项目(17KJD560004);; 国家重点研发计划项目(2016YFC0401704)~~
  • 语种:中文;
  • 页:CLDB201912015
  • 页数:7
  • CN:12
  • ISSN:50-1078/TB
  • 分类号:80-86
摘要
为探究普通混凝土基本受力形态动力性能,利用液压伺服机和材料剪切设备,设置五种不同加载应变率对普通混凝土展开受压、劈拉和受剪动力性能试验研究,得到不同加载方式下混凝土破坏形态和应力-变形曲线,根据应力-变形曲线提取峰值应力和峰值变形特征参数,分析三种不同受力方式下混凝土的动力性能。研究结果表明:混凝土受压、劈拉和受剪均存在明显动力效应,破坏形态受应变率影响较为明显;随着加载应变率提高,三种受力方式混凝土峰值应力均明显提高,其中劈拉加载方式受应变率的影响最为明显;针对峰值变形分析,受压和劈拉加载方式作用下混凝土峰值变形不受加载应变率影响。而剪切荷载作用下,随着加载应变率的提高,混凝土受弯曲效应和旋转效应影响逐步明显,导致剪切峰值变形逐步增大。同时,根据本试验数据进行数学回归分析,三种不同加载方式混凝土峰值应力与加载应变率无量纲化对数值呈线性变化关系。
        In order to investigate the basic dynamic behavior of ordinary concrete, by using hydraulic servos and material shearing equipment, five kinds of different loading strain rates were set up to test the compression behavior, tensile strength and shear dynamic performance of ordinary concrete, and the failure behavior and stress-deformation curves of concrete under different loading modes were obtained. According to the stress-deformation curve, the peak stress and corresponding deformation characteristic parameters of different loading conditions were extracted to analyze the dynamic performance of the concrete under three different stress modes. The results show that there are obvious dynamic effects on the compression, tension and shear of the concrete, and the failure mode is affected by the dynamic force. With the increase of the strain rate, the peak stress of the concrete under the three stress modes is obviously increased. The influence of strain rate on the tensile loading mode is the most obvious; the peak deformation of concrete under different loading modes is affected by the loading strain rate, and the peak deformation under compression and tension is not affected by the loading strain rate. Under the action of shear load, the bending and rotation effects gradually increase with the increase of the loading strain rate, which leads to the gradual increase of shear peak deformation. According to the mathematical regression analysis of the test data in this paper, the linear relationship between the logarithm of the peak stress and the strain rate of the concrete under pressure, tension and shear force is linear.
引文
1 Guo Zhenhai.Strength and deformation of concrete:Basis and constitutive relationship of test,Tsinghua University Press,China,1997.过镇海.混凝土的强度和变形:试验基础和本构关系,清华大学出版社,1997.
    2 Shang Shiming.Experimental study on multi-axis dynamic behavior of common concrete.Ph.D.Thesis,Dalian University of Technology,China,2013(in Chinese).尚世明.普通混凝土多轴动态性能试验研究.博士学位论文,大连理工大学,2013.
    3 Liang Ninghui,Yang Peng,Liu Xinrong,et al.Materials Review B:Research Papers,2018,32(1),288(in Chinese).梁宁慧,杨鹏,刘新荣,等.材料导报:研究篇,2018,32(1),288.
    4 Chen Min,Sun Yuchen,Zhu Qiao.Materials Review B:Research Papers,2016,30(4),118(in Chinese).陈敏,孙宇辰,朱乔.材料导报:研究篇,2016,30(4),118.
    5 Shang S,Song Y.Construction & Building Materials,2013,40(40),322.
    6 Abrams D A.ASTM Journal,1917,17(2),364.
    7 Watstein D.ACI Materials Journal,1953,49(4),729.
    8 Malvar L J,Ross C A.ACI Materials Journal,1998,95(6),735.
    9 Zeng Shajie,Li Jie.Journal of Tongji University (Natural Science Edition),2013,41 (1),7(in Chinese).曾莎洁,李杰.同济大学学报(自然科学版),2013,41(1),7.
    10 Wu Jianying,Li Jie.Journal of TongJi University (Natural Science),2006,34(11),1427(in Chinese).吴建营,李杰.同济大学学报(自然科学版),2006,34(11),1427.
    11 Li Jie,Yan Xiaohuan,Ren Xiaodan.Journal of Building Structures,2016,37(8),66(in Chinese).李杰,晏小欢,任晓丹.建筑结构学报,2016,37(8),66.
    12 Shi Linlin,Song Yupu,Shen Lu.World Seismic Engineering,2016 (2),270(in Chinese).施林林,宋玉普,沈璐.世界地震工程,2016(2),270.
    13 Song Y P,Liu H C,Cao W.Magazine of Concrete Research,2015,58(4),209.
    14 Shi L,Wang L,Song Y,et al.Construction & Building Materials,2014,66(1),181.
    15 Yan Dongming,Lin Gao,Liu Junyu,et al.Journal of Dalian University of Technology,2006,46(5),707(in Chinese).闫东明,林皋,刘钧玉,等.大连理工大学学报,2006,46(5),707.
    16 Wong R C K,Ma S K Y,Wong R H C,et al.Cement & Concrete Research,2007,37(8),1248.
    17 Xiao Shiyun,Lin Gao,Lu Jingzhou,et al.Journal of Harbin University of Civil Engineering and Architecture,2002,35(5),35(in Chinese).肖诗云,林皋,逯静洲,等.哈尔滨建筑大学学报,2002,35(5),35.
    18 Shang Renjie.Research on dynamic constitutive behavior of concrete.Ph.D.Thesis,Dalian University of Technology,China,1994(in Chinese).尚仁杰.混凝土动态本构行为研究.博士学位论文,大连理工大学,1994.