正六边形钢管约束混凝土靶边长对抗侵彻性能影响的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tests for influence of side-length of a concrete target confined with hexagonal steel tubes on its anti-penetration performance
  • 作者:宋殿义 ; 刘飞 ; 蒋志刚 ; 谭清华 ; 申志强
  • 英文作者:SONG Dianyi;LIU Fei;JIANG Zhigang;TAN Qinghua;SHEN Zhiqiang;College of Civil Engineering,Hunan University;College of Military Education and Training,National University of Defense Technology;
  • 关键词:约束混凝土 ; 侵彻试验 ; 钨芯穿甲弹 ; 侵彻深度 ; 侵彻阻力
  • 英文关键词:confined concrete;;penetration test;;armor piercing projectile(APP) with tungsten core;;depth of penetration(DOP);;penetration resistance
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:湖南大学土木工程学院;国防科技大学军事基础教育学院;
  • 出版日期:2019-01-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.333
  • 基金:国家自然科学基金资助项目(51308539)
  • 语种:中文;
  • 页:ZDCJ201901010
  • 页数:7
  • CN:01
  • ISSN:31-1316/TU
  • 分类号:66-72
摘要
钢管约束混凝土在防护结构中具有广阔的应用前景。正六边形钢管约束混凝土靶具有优良的抗侵彻性能,其抗单发和多发打击性能明显优于半无限混凝土靶。为了研究钢管边长对抗侵彻性能的影响,进行了12. 7 mm钨芯穿甲弹(撞击速度600~836 m/s)侵彻不同边长正六边形钢管约束混凝土靶试验,得到了靶的破坏模式和主要损伤参数。结果表明:钢管边长对侵彻深度和侵彻阻力有较明显的影响,边长越小,侵彻深度越小,侵彻阻力越大;撞击速度约600m/s、钢管边长由66 mm减小到55 mm时,侵彻深度可减小约19%,侵彻阻力增大约17%;正六边形钢管约束混凝土靶的侵彻深度随着撞击速度的增大近似线性增加。
        The steel tube-confined concrete( STCC) has a wide application prospect in protective structure.Hexagonal STCC targets have an excellent anti-penetration performance,and their anti-impact ability against both single and multiple artillery shells is superior to that of semi-infinite concrete targets. Tests for hexagonal STCC targets penetrated by 12. 7 mm armor piercing projectiles( APPs) with tungsten core at impact velocities within 600 m/s—836 m/s were conducted to study the influence of side-length of steel tube on targets' anti-penetration performance,and their failure modes and main damage parameters were obtained. The results showed that the side-length of steel tube significantly affects depth of penetration( DOP) and penetration resistance; the shorter the steel tube side-length,the smaller the DOP,the larger the penetration resistance; when the impact velocity is about 600m/s and the steel tube side-length decreases from 66 mm to 55 mm,the DOP decreases by about 19% and the penetration resistance increases by about17%; the DOP of hexagonal STCC targets approximately linearly increases with increase in impact velocity.
引文
[1]闫焕敏,张志刚,葛涛,等.防护工程中遮弹层的研究进展[J].兵器材料科学与工程,2016,39(1):127-132.YAN Huanmin,ZHANG Zhigang,GE Tao,et al.Research progress of bursting layer in protection engineering[J].Ordnance Material Science and Engineering,2016,39(1):127-132.
    [2]田力,朱聪.碰撞冲击荷载作用下钢筋混凝土柱的损伤评估与防护技术[J].工程力学,2013,30(9):144-150.TIAN Li,ZHU Cong.Damage evaluation and protection technique of RC columns under impulsive load[J].Engineering Mechanics,2013,30(9):144-150.
    [3]DANCYGIER A N,KATZ Z,BENAMOU D,et al.Resistance of double-layer reinforced HPC barriers to projectile impact[J].International Journal of Impact Engineering,2014,67:39-51.
    [4]BRUHL J C,VARMA A H,JOHNSON W H.Design of composite SC wall to prevent perforation from missile impact[J].International Journal of Impact Engineering,2015,75:75-87.
    [5]RIEDELA W,NOLDGEN M,STRABBURGER E,et al.Local damage to ultra high performance concrete structures caused by an impact of aircraft engine missiles[J].Nuclear Engineering and Design,2010,240:2633-2642.
    [6]董振华,韩强,杜修力.FRP约束RC矩形空心截面桥墩分析模型及试验验证[J].工程力学,2013,30(12):57-64.DONG Zhenhua,HAN Qiang,DU Xiuli.Analytical model and experimental validation of FRP confined bridge columns with RC rectangular hollow cross sections[J].Engineering Mechanics,2013,30(12):57-64.
    [7]史庆轩,王南,王秋维,等.高强钢筋约束高强混凝土轴心受压本构关系研究[J].工程力学,2013,30(5):131-137.SHI Qingxuan,WANG Nan,WANG Qiuwei,et al.Uniaxial compressive stress-strain model for high-strength concrete confined with high-strength lateral ties[J].Engineering Mechanics,2013,30(5):131-137.
    [8]MU Z C,DANCYGIER A N,ZHANG W,et al.Revisiting the dynamic compressive behavior of concrete-like materials[J].International Journal of Impact Engineering,2012,49:91-102.
    [9]蒋志刚,甄明,刘飞,等.钢管约束混凝土抗侵彻机理的数值模拟[J].振动与冲击,2015,34(11):1-6.JIANG Zhigang,ZHEN Ming,LIU Fei,et al.Simulation of anti-penetration mechanism of steel tube confined concrete[J].Journal of Vibration and Shock,2015,34(11):1-6.
    [10]甄明,蒋志刚,万帆,等.钢管约束混凝土抗侵彻性能试验[J].国防科技大学学报,2015,37(3):121-127.ZHEN Ming,JIANG Zhigang,WAN Fan,et al.Steeltube confined concrete targets penetration experiments[J].Journal of National University of Defensee Technology,2015,37(3):121-127.
    [11]WAN F,JIANG Z G,TAN Q H,et al.Response of steeltube-confined concrete targets to projectile impact[J].International Journal of Impact Engineering,2016,94:50-59.
    [12]蒋志刚,万帆,谭清华,等.钢管约束混凝土抗多发打击试验[J].国防科技大学学报,2016,38(3):117-123.JIANG Zhigang,WAN Fan,TAN Qinghua,et al.Mult-hit experiments of steel-tube-confined concrete targets[J]Journal of National University of Defensee Technology,2016,38(3):117-123.
    [13]CHOON W R O,ZHANG M H,DHU H J,et al.Cellular cement composites against projectile impact[J].International Journal of Impact Engineering,2015,86:13-26.
    [14]王起帆,石少卿,王征,等.蜂窝遮弹层抗弹丸侵彻实验研究[J].爆炸与冲击,2016,36(2):253-258.WANG Qifan,SHI Shaoqing,WANG Zheng,et al.Experimental study on penetration-resistance characteristics of honeycomb shelter[J].Explosion and Shock Waves,2016,36(2):253-258.
    [15]蒙朝美,宋殿义,蒋志刚,等.多边形钢管约束混凝土靶抗侵彻性能试验研究[J].振动与冲击,2018,37(13):3-9.MENG Chaomei,SONG Dianyi,JIANG Zhigang,et al.Experimental research on anti-penetration performance of polygonal steel-tube-confined concrete targets[J].Journal of Vibration and Shock,2018,37(13):3-9.
    [16]FORRESTAL M J,ALTAN B S,CARGILE D,et al.An empirical equation for penetration depth of ogive-nose projectile into concrete targets[J].International Journal of Impact Engineering,1994,15:395-405.
    [17]FREW D J,HANCHAK S J,GREEN M L,et al.Penetration of concrete targets with ogvie-nose steel rods[J].International Journal of Impact Engineering,1998,21:489-497
    [18]GOMEZA J T,SHUKLA A.Multiple impact penetration of semi-infinite concrete[J].International Journal of Impact Engineering,2001,25:965-979.