蜂窝钢管约束混凝土靶的准静态球形空腔膨胀模型及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quasi-static Spherical Cavity Expansion Model of Cellular Steel-tube-confined-concrete Targets and Its Application
  • 作者:宋殿义 ; 曹扬悦也 ; 蒙朝美 ; 谭清华 ; 蒋志刚
  • 英文作者:Dianyi Song;Yangyueye Cao;Chaomei Meng;Qinghua Tan;Zhigang Jiang;College of Civil Engineering,Hunan University;College of Basic Education,National University of Defense Technology;Department of the Built Environment,Eindhoven University of Technology;College of Aerospace Engineering,Air Force Engineering University;
  • 关键词:侵彻 ; 约束混凝土 ; 工程模型 ; 空腔膨胀 ; 侵彻深度
  • 英文关键词:penetration;;confined concrete;;engineering model;;cavity expansion;;depth of penetration
  • 中文刊名:GTLX
  • 英文刊名:Chinese Journal of Solid Mechanics
  • 机构:湖南大学土木工程学院;国防科技大学军事基础教育学院;埃因霍温理工大学建筑环境学院;空军工程大学航空航天工程学院;
  • 出版日期:2018-11-09 13:24
  • 出版单位:固体力学学报
  • 年:2019
  • 期:v.40
  • 基金:湖南省自然科学基金项目(2018JJ2470);; 湖南省研究生科研创新项目(CX2012B146);; 国防科技大学优秀研究生创新项目(S150901)资助
  • 语种:中文;
  • 页:GTLX201901008
  • 页数:9
  • CN:01
  • ISSN:42-1250/O3
  • 分类号:93-101
摘要
蜂窝钢管混凝土通过对混凝土施加约束提高混凝土的抗侵彻性能,建立刚性弹侵彻钢管约束混凝土靶的侵彻深度模型具有重要的理论意义和应用价值;而基于空腔膨胀理论建立工程模型是研究侵彻问题的常用方法之一.论文针对射弹侵彻蜂窝钢管钢管约束混凝土靶问题,考虑被打击单元钢管及其外围混凝土的综合约束作用,粉碎区混凝土采用Hoek-Brown(H-B)准则,建立了蜂窝钢管约束混凝土靶的准静态球形空腔膨胀模型和刚性弹侵彻深度预测公式,并基于相关侵彻试验分析了综合约束刚度对侵彻过程的影响.研究结果表明:蜂窝钢管约束混凝土靶不同于半无限混凝土靶,侵彻过程中的扩孔压力不为常数;综合约束刚度越大,扩孔压力越大;侵彻深度预测公式计算结果与文献侵彻试验吻合较好.论文成果为蜂窝钢管混凝土在防护结构中的应用奠定了基础.
        Cellular steel-tube-confined-concrete improves the anti-penetration performance of concrete by restraining the concrete.It is of great theoretical significance and application value to establish the penetration depth model for steel-tube-confined-concrete(STCC)targets penetrated by rigid projectiles.The cavity expansion theory is one of the common methods to establish the engineering models for penetration problems.For the penetration problem of cellular STCC targets,aquasi-static spherical cavity expansion model is firstly developed on the basis of inclusion of the comprehensive confinement of steel tube and the peripheral concrete on the impacted cell as well as the assumption that failure behavior of concrete obeys the Hoek-Brown(H-B)criterion in the comminuted region;and then influences of the comprehensive confinement stiffness on the penetration process are analyzed on the basis of relevant penetration tests.The numerical results show that the radial stress of STCC targets on the cavity wall does not remain constant during the expansion process,which is different from those of infinite concrete targets;the pressure on cavity wall increases with the increase of the comprehensive confinement stiffness;and the predicted results of depth of penetration are in good agreement with the experimental ones in the literature.The results in this paper may lay a foundation for the application of cellular steel-tube-confined-concrete in the protective structures.
引文
[1]Dancygier A N,Yankelevsky D Z,Jaegermann C.Response of high performance concrete plates to impact of non-deforming projectiles[J].Int J Impact Eng,2007,34:1768-1779.
    [2]Wu H,Fang Q,Gong J,et al.Projectile impact resistance of corundum aggregated UHP-SFRC[J].Int J Impact Eng,2015,84:38-53.
    [3]王起帆,石少卿,王征等.蜂窝遮弹层抗弹丸侵彻实验研究[J].爆炸与冲击,2016,36(2):253-258.(Wang Q F,Shi S Q,Wang Z,et al.Experimental study on penetration-resistance characteristics of honeycomb shelter[J].Explosion and Shock Waves,2016,36(2):253-258.(in Chinese))
    [4]蒋志刚,万帆,谭清华等.钢管约束混凝土抗多发打击试验[J].国防科技大学学报,2016,38(3):117-123.(Jiang Z G,Wan F,Tan Q H,et al.Multi-hit experiments of steel-tube confined concrete targets[J].Journal of National University of Defense Technology,2016,38(3):117-123.(in Chinese))
    [5]甄明,蒋志刚,万帆等.钢管约束混凝土抗侵彻性能试验[J],国防科技大学学报,2015,37(3):121-127.(Zhen M,Jiang Z G,Wan F,et al.Steel tube confined concrete targets penetration experiment[J].Journal of National University of Defense Technology,2015,37(3):121-127.(in Chinese))
    [6]Wan F,Jiang Z G,Tan Q H,et al.Response of steel-tube-confined concrete targets to projectile impact[J].Int J Impact Eng,2016,94:50-59.
    [7]蒙朝美,宋殿义,蒋志刚等,多边形钢管约束混凝土靶抗侵彻性能试验研究[J].振动与冲击,2018,37(13):3-9.(Meng C M,Song D Y,Jiang Z G,Liu F,Tan Q H.Experimental research on anti-penetration performance of polygonal steel-tube-confined concrete targets[J].Journal of Vibration and Shock,2018,37(13):3-9.(in Chinese))
    [8]Ben-Dor G,Dubinsky A,Elperin T.Analytical engineering models for predicting high speed penetration of hard projectiles into concrete shields:A review[J].Int J Damage Mechanics,2015,24(1):76-94.
    [9]Forrestal M J,Tzou D Y.A spherical cavity-expansion penetration model for concrete targets[J].International Journal of Solids and Structures,1997,34:4127-4146.
    [10] Forrestal M J,Altman B S,Cargile J D,Hanchak S J.An empirical equation for penetration depth of ogive-node projectiles into concrete targets[J].Int J Impact Eng,1994,15:395-405.
    [11] Forrestal M J,Frew D J,Hanchak S J,et al.Penetration of grout and concrete targets with ogive-nose steel projectiles[J].Int J Impact Eng,1996,18:465-476.
    [12] Frew D J,Hanchak S J,Green M L,et al.Penetration of concrete targets with ogive-nose steel rods[J].Int J Impact Eng,1998,21:489-497.
    [13] Chen X W,Li Q M.Deep penetration of a non-deformable projectile with different geometrical characteristics[J].Int J Impact Eng,2002,27:619-637.
    [14] Li Q M,Chen X W.Dimensionless formula for penetration depth of concrete target impacted by a non-deformable projectile[J].Int J Impact Eng,2003,28:93-116.
    [15] Warren T L,Forquin P.Penetration of common ordinary strength water saturated concrete targets by rigid ogive-nosed steel projectiles[J].Int J Impact Eng,2016,90:37-45.
    [16] Hoek E,Martin C D.Fracture initiation and propagation in intact rock-A review[J].Journal of Rock Mechanics and Geotechnical Engineering,2014,6:287-300.
    [17] Hoek E,Brown E T.Empirical strength criterion for rock masses[J].Journal of the Geotechnical Engineering Division,1980,9:1013-1035.
    [18] Zuo J P,Li H T,Xie H P,et al.A nonlinear strength criterion for rocklike materials based on fracture mechanics[J].Int J RockMechanics and Mining Sciences,2008,45(4):594-599.
    [19] Zuo J P,Liu H H,Li H T.A theoretical derivation of the Hoeke Brown failure criterion for rock materials[J].Journal of Rock Mechanics and Geotechnical Engineering,2015,7:361-366.
    [20]曹扬悦也,蒋志刚,谭清华等.基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型[J].振动与冲击,2017,39(5):48-53,60.(Cao Y Y Y,Jiang Z G,Tan Q H,et al.Penetration model for concrete-rock targets based on Hoek-Brown criterion[J].Journal of Vibration and Shock,2017,39(2):8-12.(in Chinese))
    [21] Meng C M,Tan Q H,Jiang Z G,et al.Approximate solutions of finite dynamic spherical cavity-expansion models for penetration into elastically confined concrete targets[J].International Journal of Impact Engineering,2018,114:182-193.
    [22]詹昊雯,曹扬悦也,蒋志刚等.约束混凝土靶的准静态柱形空腔膨胀理论[J].弹道学报,2017,29(2):13-18.(Zhan H W,Cao Y Y Y,Jiang Z G,et al.Quasi-static cylindrical cavity-expansion model for confined-concrete targets[J].Journal of Ballistics,2017,29(2):13-18.(in Chinese))
    [23]黄义,何芳社.弹性地基上的梁、板、壳[M].2005,科学出版社.(Huang Y,He F S.Plate,Beam and Shell on Elastic Foundation[M].2005,Science Press(in Chinese))
    [24] Yang G T.Theoryof Elasticity and Plasticity[M].2004,China Building Materials Industry Press.
    [25] Satapathy S,Bless S.Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis[J].Mechanics of Materials,1996,23:323-330.
    [26] Said I.Mechanical properties of high-performance concrete[J].ACI Materials Journal,1996,93(5):416-426.
    [27]阎培渝,张波.以不同形态硅灰配制的高强混凝土的力学性能[J].硅酸盐学报,2016,44(12):196-201(Yan P Y,Zhang B.Mechanical properities of high strength concrete prepared with different densities of silica fume[J].Journal of the Chinese Ceramic Society,2016,44(12):196-201.(in Chinese))