弯管体系内浆液流动分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on hydrate slurry flow in curved pipe
  • 作者:孙贤 ; 刘德俊 ; 王文武 ; 荣峰
  • 英文作者:SUN Xian;LIU De-jun;WANG Wen-wu;RONG Feng;College of Petroleum,Liaoning Shihua University;
  • 关键词:弯管 ; 水合物浆 ; 数值模拟 ; 体积分数 ; 流速
  • 英文关键词:curved pipe;;hydrate slurry;;numerical simulation;;volume fraction;;flow velocities
  • 中文刊名:IMIY
  • 英文刊名:Chemical Engineering(China)
  • 机构:辽宁石油化工大学石油天然气工程学院;
  • 出版日期:2019-06-15
  • 出版单位:化学工程
  • 年:2019
  • 期:v.47;No.364
  • 语种:中文;
  • 页:IMIY201906012
  • 页数:6
  • CN:06
  • ISSN:61-1136/TQ
  • 分类号:63-68
摘要
针对弯管系统中易在弯头处出现水合物堵塞的现象,以弯管系统中水合物浆液输送过程为研究对象,通过数值模拟对影响弯管系统中水合物颗粒最大体积分数的2个因素(颗粒直径、管径)进行了分析。结果表明:当水合物浆流速较小时,弯管系统中水合物最大体积分数受粒径的影响较大,即随着粒径的增大,水合物的最大体积分数趋近迅速增大的状态,而当浆液流速较快时,水合物最大体积分数受流速影响较大;管径的增大可以减小水合物颗粒直径对弯管系统中水合物最大体积分数的影响,到管道直径达到200 mm时,水合物颗粒直径的变化几乎不会影响水合物最大体积分数。研究结果为水合物浆液混输领域的发展提供理论依据。
        In view of the phenomenon that hydrate blockage occurs easily in elbow system,taking the hydrate slurry transport process in the elbow system as the research object,the two factors( particle diameter and diameter) that affect the maximum volume fraction of hydrate particles in the system were analyzed by numerical simulation. The results showed that: When slurry flow rate is small,the hydrate maximum volume fraction in the elbow system is largely influenced by the particle size. In another word,with the increase of particle size,the maximum volume fraction of hydrate increases rapidly; when slurry flow rate is faster,the volume fraction of hydrate is mainly influenced by velocity; The increase of tube diameter can reduce the influence of hydrate particle diameter on the maximum volume fraction of hydrate in pipe bending system. When the diameter of pipe is 200 mm,the change of hydrate particle diameter has little effect on the maximum volume fraction of hydrate. The results can provide a theoretical basis for the development of hydrate slurry transportation.
引文
[1]马贵阳,宫清君,潘振,等.基于支持向量机结合遗传算法的天然气水合物相平衡研究[J].天然气工业,2017,37(5):46-52.
    [2]车雯,梁海峰,孙国庆,等.天然气水合物沉积层渗流特性的模拟[J].化工进展,2015,34(6):1576-1581.
    [3]刘军,马贵阳,潘振,等.甲烷水合物生成分解的实验研究[J].化学工程,2015,43(11):35-40.
    [4]闫柯乐,邹兵,姜素霞,等.水合物浆液流动与流变特性研究进展[J].化工进展,2015,34(7):1817-1825.
    [5]陈彬,辛峰,宋小飞,等.相变浆液中甲烷水合物的生成过程强化[J].化工学报,2016,67(8):3202-3208.
    [6]王蕾,王树立,李建敏,等.流动体系水合物生成及其流动特性试验研究[J].石油机械,2015,43(7):111-115.
    [7]MA Z W,ZHANG P,WANG R Z,et al.Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes[J].International Journal of Heat&Mass Transfer,2010,53(19/20):3745-3757.
    [8]CHEN Jun,YAN Ke Le,CHEN Guangjin,et al.Insights into the formation mechanism of hydrate plugging in pipelines[J].Chemical Engineering Science,2015,122(27):284-290.
    [9]PENG B Z,CHEN Jun,SUN Changyu,et al.Flow characteristics and morphology of hydrate slurry formed from(natural gas+diesel oil/condensate oil+water)system containing anti-agglomerant[J].Chem Eng Sci,2012,84(84):333-344.
    [10]闫柯乐,孙长宇,邹兵,等.联用型水合物抑制剂在循环管路内抑制性能研究[J].科学技术与工程,2015,15(15):136-141.
    [11]唐绍猛,刘德俊,王光辉.油水两相流弯管处安全分析[J].中国安全生产科学技术,2016,12(10):96-101.
    [12]陈磊,李长俊,季楚凌.水平弯管内硫沉积数值模拟研究[J].中国安全生产科学技术,2015,11(2):28-35.
    [13]彭文山,曹学文,吉俊毅,等.油水砂多相流中固体颗粒对弯管及T型堵头管的冲蚀[J].腐蚀与防护,2016,37(2):131-136.
    [14]陈小平.煤液化多相流分离冷换过程固相漂移机理及磨损预测方法研究[D].杭州:浙江理工大学,2016.
    [15]唐绍猛,刘德俊,王光辉.油水两相流弯管处安全分析[J].中国安全生产科学技术,2016,12(10):96-101.
    [16]WANG Wuchang,FAN Shishi,LIANG Dongqiang,et al.Experimental study on flow characters of CH3CCl2Fhydrate slurry[J].International Journal of Refrigeration,2008,31(3):371-378.
    [17]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002:358-361.