CFRP十二直角薄壁梁保险杠的轻量化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lightweight Design of CFRP Thin-walled Beam Bumper with Twelve Right-angle Section
  • 作者:陈光 ; 路深 ; 赵紫剑 ; 陈超 ; 娄磊
  • 英文作者:Chen Guang;Lu Shen;Zhao Zijian;Chen Chao;Lou Lei;School of Mechanical Engineering,Hebei University of Technology;General R&D Institute,China FAW Group Co.,Ltd.;National Passenger Car Quality Supervision and Inspection Center,China Automotive Technology and Research Center;
  • 关键词:保险杠 ; 碰撞能量吸收 ; 轻量化 ; CFRP ; 十二直角薄壁梁
  • 英文关键词:bumper;;crash energy absorption;;lightweighting;;CFRP;;twelve right-angle section thin-walled beam
  • 中文刊名:QCGC
  • 英文刊名:Automotive Engineering
  • 机构:河北工业大学机械工程学院;中国第一汽车集团有限公司研发总院;中国汽车技术研究中心国家轿车质量监督检测中心;
  • 出版日期:2019-02-25
  • 出版单位:汽车工程
  • 年:2019
  • 期:v.41;No.295
  • 基金:河北省重点研发计划项目(17212203D);; 河北省高等学校科学技术研究项目(QN201688)资助
  • 语种:中文;
  • 页:QCGC201902017
  • 页数:7
  • CN:02
  • ISSN:11-2221/U
  • 分类号:116-122
摘要
针对某B级轿车保险杠总成轻量化改进设计,基于碰撞能量管理的方法,确定了保险杠吸能目标,采用正向设计的方法进行详细尺寸设计。吸能盒采用外层为碳纤维增强复合材料(CFRP)、内层为低碳钢板的十二直角薄壁梁结构,根据薄壁梁压溃理论,分别确定两层材料厚度理论值。横梁采用单层CFRP材料的十二直角薄壁梁结构,以刚度等效替代方法,确定横梁厚度理论值。以厚度理论值为基础,设计一系列对比方案,最终通过高、低速碰撞验证选出合理方案,在保证吸能要求的前提下,使保险杠总成质量减轻41.5%。
        Aiming at the light-weight modification design of the bumper assembly of a B-class car, its energy absorption target is determined based on crash energy management method and the detailed dimension design is conducted with forward design scheme. The energy-absorbing box adopts a two-layer twelve-right-angle-section thin-walled beam structure with an outer layer of carbon fiber reinforced polymer and an inner layer of low-carbon steel sheet, and its theoretical thickness values of both layers are determined based on the collapse theory for thin-walled beam. The bumper beam uses the same twelve-right-angle-section thin-walled beam structure but with single layer and its theoretical thickness value is determined by using equivalent stiffness substitution method. A series of comparison schemes are designed based on theoretical thickness values and a reasonable scheme is finally selected through high-speed and low-speed crash verifications, achieving a mass reduction rate of 41.5% for bumper assembly while meeting the requirements of energy absorption.
引文
[1] 陈光,张君媛,刘乐丹等.基于子结构性能的车体前端结构抗撞性设计[J]. 汽车工程,2013,35(9):794-798.
    [2] 张振明.变厚度复合材料汽车防撞梁优化设计研究[D].长沙:湖南大学,2014.
    [3] MAI N J, ALI A, SAHARI B, et al. Performance of automotive composite bumper beams and hood subjected to frontal impacts[J]. Materialprufung,2013,54(54):19-25.
    [4] KORICHO E, BELINGARDI G, TEKALIGN A, et al. Crashworthiness analysis of composite and thermoplastic foam structure for automotive bumper subsystem[M]. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness. 2012:129-148.
    [5] 王宏雁.汽车车身轻量化结构与轻质材料[M].北京:北京大学出版社,2009.
    [6] PARK C K, KAN C D, HOLLOWELL W T, et al. Investigation of opportunities for lightweight vehicles using advanced plastics and composites[J]. Impact Tests,2012.
    [7] HIKMAT M, WANG R, MOOSA A G. Crush design/analysis of composite vehicle front end structure[C]. SAE Paper 2002-01-1299.
    [8] THORNTON P H, JERYAN R A . Crash energy management in composite automotive structures[J]. International Journal of Impact Engineering,1988,7(2):167-180.
    [9] BERNAL E, CUARTERO J, NUEZ C, et al. Advances in the crash simulation of vehicle frontal crash structures made of braided composite materials[C]. SAE Paper 2004-01-1175.
    [10] 周华.汽车保险杠耐碰性试验研究[D].长春:吉林大学,2009.
    [11] 张君媛,陈光,刘乐丹,等.乘用车结构正面抗撞性波形设计与目标分解[J].吉林大学学报(工学版),2012,42(4):823-827.
    [12] WANG X G, BLOCH J A, CESARI D. Static and dynamic axial crushing of externally reinforced tubes[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,1992,206(5):355-360.
    [13] HANEFI E H, WIERZBICKI T. Axial resistance and energy absorption of externally reinforced metal tubes[J]. Composites Part B: Engineering, 1996, 27(5):387-394.
    [14] 陈光.多直角薄壁梁理论及在车身抗撞性设计中的应用研究[D].长春:吉林大学,2014.
    [15] 张君媛,陈光,武栎楠,等.基于薄壁梁耐撞性理论的乘用车前纵梁轻量化设计[J].吉林大学学报(工学版),2013,43(6):1441-1446.
    [16] 刘国军.复合材料汽车车轮的强度分析及优化设计[D].哈尔滨:哈尔滨工业大学,2006.
    [17] WU J P, BILKHU S, NUSHOLTZ S. An impact pulse-restraint energy relationship and its applications[C]. SAE 2003 World Congress & Exhibition. 2003.