小天体探测器着陆附着技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Lander Adhering and Recovery Technology for Asteroid Exploration
  • 作者:王立武 ; 戈嗣诚 ; 蒋万松
  • 英文作者:WANG Liwu;GE Sicheng;JIANG Wansong;Beijing Institute of Space Mechanics & Electricity;Key Laboratory for Nondestructive Spacecraft Landing Technology of CAST;
  • 关键词:锚定系统 ; 爪刺附着机构 ; 着陆附着 ; 小天体探测
  • 英文关键词:anchor system;;micro pierce mechanism;;lander adhesion;;asteroid exploration
  • 中文刊名:HFYG
  • 英文刊名:Spacecraft Recovery & Remote Sensing
  • 机构:北京空间机电研究所;中国空间技术研究院航天器无损着陆技术核心专业实验室;
  • 出版日期:2019-06-15
  • 出版单位:航天返回与遥感
  • 年:2019
  • 期:v.40;No.177
  • 语种:中文;
  • 页:HFYG201903004
  • 页数:10
  • CN:03
  • ISSN:11-4532/V
  • 分类号:18-27
摘要
探测器着陆附着技术是小天体探测任务中的关键性技术,关系到任务的成败。文章介绍了美国、欧洲、日本已先期开展的部分小行星、彗星等小天体探测任务,对国内外小天体探测着陆附着技术的研究现状进行了说明。分析了北京空间机电研究所提出的一种用于小行星表面勘测的新概念着陆附着系统,并进行了可控重复附着功能设计和试验,结果表明,新系统能够实现在厘米级粗糙尺度的小行星硬质表面可靠附着。由于新系统的附着模块采用了仿生甲虫爪刺抓附原理设计,其着陆缓冲模块展开折叠比高、着陆稳定性强,研究成果可以为中国小行星探测任务提供技术支撑。
        Landing adhering technologies is an important technology in asteroid exploration mission.Firstly, this paper summarized the current research of small planet explorations of landing adhering and reentry vehicles recovery in United States, Europe and Japan, and then analyzed the technology requirements for our exploration mission. The anchor system for asteroid surface exploration not only can unfold largely than initial state, but also has an excellent stability. Furthermore a bionics micro-pawl mechanism is designed, which can adhere on centimeter-size roughness surface of asteroid reliably. Finally research work on anchor system under microgravity environment technology are presented, which can support our asteroid exploration mission.
引文
[1]DESAI P N,CHEATWOOD F M.Entry Dispersion Analysis for the Genesis Sample Return Capsule[J].Journal of Spacecraft and Rockets,2001,38(3):345-350.
    [2]SANCHEZ J P,MCLNNES C R.Assessment on the Feasibility of Future Shepherding of Asteroid Resources[J].Acta Astronautics,73(2012):49-66.
    [3]FARQUHAR R W,DUNHAM D W,MCADAMS J V.NEAR Mission Overview and Trajectory Design[J].Journal of the Astronautical Sciences,1995,43(4):353-371.
    [4]VEVERKA J,FARQUHAR B,ROBINSON M,et al.The Landing of the NEAR-shoemaker Spacecraft on Asteroid 433Eros[J].Nature,2001,413(6854):390-393.
    [5]NELSON R,WHITTENBURG K,HOLDRIDGE M.433 Eros Landing Development of NEAR Shoemaker’s Controlled Descent Sequence[C]//15th Annual AIAA/USU Conference on Small Satellites,Los Angeles,SSC 01-11,2001.
    [6]ACCOMAZZO A,FERRI P.Rosetta Visits Asteroid(21)Lutetia[C]//61st International Astronautical Congress,City of Light,CZ France,2006:17.
    [7]FERRI P.Mission Operations for the New Rosetta[J].Acta Astronautica,2006,58(2):105-111.
    [8]ULAMEC S,ESPINASSE S,FEUERBACHER B,et al.Rosetta Lander-philae:Implications of an Alternative Mission[J].Acta Astronautica,2006,58(8):435-441.
    [9]AARON P,MATTHEW F.Microgravity Coring:A Self-contained Anchor and Drill for Consolidated Rock[C]//IEEE AC,Shanghai,2011,1335:1-7.
    [10]MURPHY M P,KUTE C,MENGUQ Y,et al.Waalbot II:Adhesion Recovery and Improved Performance of a Climbing Robot Using Fibrillar Adhesives[J].The International Journal of Robotics Research,2011,30(1):118-133.
    [11]ALAN T A.Designing Compliant Spine Mechanisms for Climbing[J].Journal of Mechanisms and Robotics,2012(4):031007.1-031007.8.
    [12]SIPILA S A,SCOVILLE Z C,BOWIE J T,et al.Extravehicular Activity Asteroid Exploration and Sample Collection Capability[C]//13th International Conference on Space Operations,Pasadena,California,2014:1-11.
    [13]RICHARD G W,ROBERT A M,JAMES N M.Low Density Aerodynamics of the Stardust Sample Return Capslue:AIAA97-2510[R].Washington DC:AIAA,1997.
    [14]PRASUN N D,DAN T.LYONS,et al.Entry,Descent and Landing Operations Analysis for the Stardust Re-entry Capsule[J].Journal of Spacecragt and Rockets,2008,45(6):1262-1268.
    [15]MITCHEHREE R A,WILMOTH R G,Cheatwood F M.Aerodynamic of Stardust Sample Return Capsule:AIAA 97-2304[R].Washington D C:AIAA,1997.
    [16]GUILLAUME R,FRANCI N.Thermal Evolution of Pluto and Implications for Surface Tectonics and a Subsurface Ocean[J].Icarus,2010,216:426-439.
    [17]YANO H,KUBOTA T,MIYAMOTO H,et al.Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa[J].Science,2006,312(5778):1350-1353.
    [18]TSUDA Y,YOSHIKAWA M,ABE M,et al.System Design of the Hayabusa 2-Asleroid Sample Return Mission to 1999ju3[J].Acta Astronautica,2013,9l:356-362.
    [19]FUJIWARA A,MUKAI T,KAWAGUCHI J,et al.Sample Return Mission to NEA:MUSES-C[J].Advances in Space Research,2000,25(2):231-238.
    [20]KAZUHISA F,YOSHIFUMI I,KOIYU H.Assessment of Dynamic Stability of Muses-C Capsule in Hypersonic Rarefied Regime:AIAA 2003-3893[R].Washington D C:AIAA,2003.
    [21]BLANC M,ALIBERT Y,ANDRE N.LAPLACE:A Mission to Europa and the Jupiter System for ESA’s Cosmic Vision Programme[J].Exp Astronaut,2009,23:849-892.
    [22]SCHEERES D J,HARTZELL C M,SANCHEZ P,et al.Scaling Forces to Asteroid Surfaces:The Role of Cohesion[J].Icarus,2010,210:968-984.
    [23]MICHIKAMI T,NAKAMURA A M,HIRATA N.The Shape Distribution of Boulders on Asteroid 25143 Itokawa:Comparison with Fragments from Impact Experiments[J].Icarus,2010,207:277-284.
    [24]MILANI A,KNEZEVIC Z,NOVAKOVIC B.Dynamics of the Hungaria Asteroids[J].Icarus,2010,207:769-794.
    [25]BENNER L A M,OSTRO S J,MAGRI C.Near-Earth Asteroid Surface Roughness Depends on Compositional Class[J].Icarus,2008,198:294-304.