土壤水分和温度对西南喀斯特棕色石灰土无机碳释放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Soil Moisture and Temperature on the Soil Inorganic Carbon Release of Brown Limestone Soil in the Karst Region of Southwestern China
  • 作者:徐学池 ; 黄媛 ; 何寻阳 ; 王桂红 ; 苏以荣
  • 英文作者:XU Xue-chi;HUANG Yuan;HE Xun-yang;WANG Gui-hong;SU Yi-rong;Key Laboratory of Agro-ecological Processes in Subtropical Region,Institute of Subtropical Agriculture,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Huanjiang Observation and Research Station for Karst Eco-systems,Chinese Academy of Sciences;Guangxi Botanical Garden of Medicinal Plants;College of Agricultural,Guizhou University;
  • 关键词:棕色石灰土 ; 温度 ; 水分 ; ~(14)C-碳酸钙
  • 英文关键词:brown limestone soil;;temperature;;soil moisture;;~(14)C-labeled calcium carbonate
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;中国科学院大学;中国科学院环江喀斯特农业生态试验站;广西药用植物园;贵州大学农学院;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2016YFC0502404);; 国家自然科学基金项目(41471199);; 中国科学院西部之光人才培养计划“西部青年学者”项目(Y62305040)
  • 语种:中文;
  • 页:HJKZ201904053
  • 页数:8
  • CN:04
  • ISSN:11-1895/X
  • 分类号:447-454
摘要
为了探明环境因子对喀斯特土壤碳酸盐转化的影响,从而为深入理解土壤生态过程及碳循环提供理论依据.以典型喀斯特地区棕色石灰土和地带性红壤(对照)为研究对象,采用添加~(14)C-CaCO_3室内培养100 d的方法,研究3种温度(15、25、35℃)和水分(30%、65%和100%WHC)条件下土壤无机碳释放特征.结果表明,不同水分和温度条件下,棕色石灰土无机碳释放速率最大值和100d累积最大释放量为0. 7~16. 8 mg·(kg·d)~(-1)和5. 9~29. 4 mg·kg~(-1),红壤为39. 7~103. 3mg·(kg·d)~(-1)和83. 3~135. 1 mg·kg~(-1);干旱条件下(30%WHC)两种土壤无机碳累积释放量最大,随温度升高而增加,而且在65%WHC和100%WHC条件下,升温仍促进土壤无机碳释放;棕色石灰土无机碳释放的温度敏感性大于红壤,受土壤水分影响显著.添加碳酸钙后土壤pH和MBC含量均显著增加,两种土壤差异显著.方差分解结果表明,温度可解释无机碳释放7. 6%的变异,水分解释变异的2. 0%.因此在全球气候变化和极端降水事件增加的背景下,研究西南喀斯特土壤碳循环及其动态变化规律时,应充分考虑土壤水分和温度对土壤无机碳释放的影响.
        In order to understand the influence of environmental factors on the carbonate conversion of the Karst soil,typical brown limestone and red soil samples were collected from the Karst ecosystem,and a 100-day incubation experiment was conducted. The characteristics of inorganic carbon release from the soil under three temperature gradients( 15,25,and 35℃) and water contents( 30%,65%,and 100% WHC) were studied by adding~(14)C-CaCO_3 for 100 d. The results showed that under the different soil moisture and temperature conditions,the maximum rate and the cumulative amount of inorganic carbon release from the soil over 100 days varied between 0. 7-16. 8 mg·( kg·d)~(-1) and 5. 9-29. 4 mg·kg~(-1),respectively,in the brown limestone soil,and varied between 39. 7-103. 3 mg·( kg·d)~(-1) and 83. 3-135. 1 mg·kg~(-1),respectively in the red soil. Under drought conditions( 30% WHC),the cumulative amount of inorganic carbon release was the highest for the two soils and increased with increasing temperature. At 65% WHC and100% WHC,increasing temperature can still promote inorganic carbon release from the soil. The temperature sensitivity of the soil inorganic carbon release in the brown limestone soil is greater than that of the red soil,which is significantly affected by soil moisture.The soil pH and MBC content were remarkably increased after adding Ca CO_3,and the difference between the two soils was significant.The variance partition showed that temperature and soil moisture can explain 7. 6% and 2. 0% of the soil inorganic carbon release variability,respectively. In conclusion,warming and drought aggravate inorganic carbon release from brown limestone soil in the southwestern Karst region. Therefore,in the context of global warming and more frequent extreme precipitation events,the effects of soil moisture and temperature on inorganic carbon conversion in soil should be fully considered when studying the soil carbon cycle and its dynamic changes in southwestern Karst. This research can provide a scientific basis for further understanding the influence of climate change on the global carbon cycle.
引文
[1] Ahirwal J,Maiti S K,Singh A K. Changes in ecosystem carbon pool and soil CO2flux following post-mine reclamation in dry tropical environment, India[J]. Science of the Total Environment,2017,583:153-162.
    [2] Deng L,Liu G B,Shangguan Z P. Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green'Program:a synthesis[J]. Global Change Biology,2014,20(11):3544-3556.
    [3] Basher L,Betts H,Lynn I,et al. A preliminary assessment of the impact of landslide,earthflow,and gully erosion on soil carbon stocks in New Zealand[J]. Geomorphology,2018,307:93-106.
    [4] Hirmas D R,Amrhein C,Graham R C. Spatial and processbased modeling of soil inorganic carbon storage in an arid piedmont[J]. Geoderma,2010,154(3-4):486-494.
    [5] Li Y,Wang Y G,Houghton R A,et al. Hidden carbon sink beneath desert[J]. Geophysical Research Letters,2015,42(14):5880-5887.
    [6]李杨梅,贡璐,安申群,等.基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移[J].环境科学,2018,39(8):3867-3875.Li Y M,Gong L,An S Q,et al. Transfer of soil organic carbon to inorganic carbon in arid oasis based on stable carbon isotope technique[J]. Environmental Science,2018,39(8):3867-3875.
    [7]孟延,蔡苗,师倩云,等.氮肥用量对石灰性土壤二氧化碳释放的影响[J].土壤通报,2015,46(4):948-954.Meng Y,Chai M,Shi Q Y,et al. Effects of nitrogen fertilizer application on carbon dioxide emission from calcareous soil[J].Chinese Journal of Soil Science,2015,4(6):948-954.
    [8]张林.荒漠草原土壤有机碳向土壤无机碳酸盐转移的定性与定量研究[D].北京:北京林业大学,2010.Zhang L. Qualitative and quantitative research of soil organic carbon transfer to soil inorganic carbon in desert grassland[D].Beijing:Beijing Forestry University,2010.
    [9]王忠媛,谢江波,王玉刚,等.温度对盐土和碱土土壤无机CO2通量的影响[J].生态学杂志,2013,32(10):2525-2531.Wang Z Y,Xie J B,Wang Y G,et al. Effects of temperature on inorganic CO2flux of saline soil and alkaline soil[J]. Chinese Journal of Ecology,2013,32(10):2525-2531.
    [10] Yan J H,Li J M,Ye Q,et al. Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin,southwest China[J]. Chemical Geology,2012,304-305:1-9.
    [11]凡非得,王克林,熊鹰,等.西南喀斯特区域水土流失敏感性评价及其空间分异特征[J].生态学报,2011,31(21):6353-6362.Fan F D,Wang K L,Xiong Y,et al. Assessment and spatial distribution of water and soil loss in karst regions,southwest China[J]. Acta Ecologica Sinica,2011,31(21):6353-6362.
    [12]郭柯,刘长成,董鸣.我国西南喀斯特植物生态适应性与石漠化治理[J].植物生态学报,2011,35(10):991-999.Guo K,Liu C C,Dong M. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China[J]. Chinese Journal of Plant Ecology,2011,35(10):991-999.
    [13] Liu M X,Xu X L,Sun A Y,et al. Is southwestern China experiencing more frequent precipitation extremes?[J].Environmental Research Letters,2014,9(6):479-489.
    [14]黄媛.桂西北典型土壤有机碳矿化对碳酸钙、水分及温度的响应[D].桂林:广西师范大学,2013.Huang Y. The response of Northwest Guangxi typical soil organic carbon mineralization to calcium carbonate,water content and temperature[D]. Guilin:Guangxi Normal University,2013.
    [15]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000. 25-108.
    [16] Wu J,O'Donnell A G. Procedure for the simultaneous analysis of total and radioactive carbon in soil and plant materials[J]. Soil Biology and Biochemistry,1997,29(2):199-202.
    [17] Wu J,Joergensen R G,Pommerening B,et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry,1990,22(8):1167-1169.
    [18] Zhu B,Cheng W X. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition[J].Global Change Biology,2011,17(6):2172-2183.
    [19] Allison S D,Wallenstein M D,Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J].Nature Geoscience,2010,3(5):336-340.
    [20] Wu H B,Guo Z T,Gao Q,et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture,Ecosystems&Environment,2009,129(4):413-421.
    [21] Denef K,Stewart C E,Brenner J,et al. Does long-term centerpivot irrigation increase soil carbon stocks in semi-arid agroecosystems[J]. Geoderma,2008,145(1-2):121-129.
    [22]董燕婕.塿土剖面不同碳库贮量及释放特性研究[D].杨凌:西北农林科技大学,2013.Dong Y J. Carbon stock and stabilization in Lou soil[D].Yangling:Northwest A&F University,2013.
    [23] Zornoza R,Acosta J A,Faz A,et al. Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation[J]. Geoderma,2016,272:64-72.
    [24] Fernández-Calvino D,Baath E. Growth response of the bacterial community to pH in soils differing in pH[J]. FEMS Microbiology Ecology,2010,73(1):149-156.
    [25] Li W,Zhou P P,Jia L P,et al. Limestone dissolution induced by fungal mycelia,acidic materials,and carbonic anhydrase from fungi[J]. Mycopathologia,2009,167(1):37-46.
    [26]高红贝.温度对土壤水分运动及参数的影响研究[D].杨凌:西北农林科技大学,2011.Gao H B. Research on the effect of temperature on soil water movement and parameters[D]. Yangling:Northwest A and F University,2011.
    [27] Raheb A,Heidari A,Mahmoodi S. Organic and inorganic carbon storage in soils along an arid to dry sub-humid climosequence in northwest of Iran[J]. Catena,2017,153:66-74.
    [28] Zhao H L,Tian X H,Chen Y L,et al. Effect of exogenous substances on soil organic and inorganic carbon sequestration under maize stover addition[J]. Soil Science and Plant Nutrition,2017,63(6):591-598.
    [29]董雪,王春燕,黄丽,等.侵蚀红壤腐殖酸组分特点及其对水稳性团聚体的影响[J].土壤学报,2014,51(1):114-125.Dong X,Wang C Y,Huang L,et al. Characteristics of humus fraction in erosion ultisols and their effects on water-stable aggregates[J]. Acta Pedologica Sinica,2014,51(1):114-125.
    [30]刘加彬.植被恢复及地气间CO2无机交换对典型沙地土壤碳的影响[D].北京:北京林业大学,2014.Liu J B. Effects of vegetation rehabilitation and abiotic CO2exchange between soil and atmosphere on soil carbon in a desert ecosystem[D]. Beijing:Beijing Forestry University,2014.