大跨度固接钢-混凝土组合楼盖关键技术分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Key techniques of large-span steel-concrete composite floor structures with fixed beam-column connections
  • 作者:周萌 ; 刘诚 ; 陶慕轩 ; 聂建国
  • 英文作者:ZHOU Meng;LIU Cheng;TAO Muxuan;NIE Jianguo;Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry,Tsinghua University;
  • 关键词:钢-混凝土组合结构 ; 楼盖 ; 大跨度 ; 有限元分析 ; 结构设计
  • 英文关键词:steel-concrete composite structure;;floor structure;;large-span;;FEA;;structural design
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:清华大学土木工程安全与耐久教育部重点实验室;
  • 出版日期:2015-09-05
  • 出版单位:建筑结构学报
  • 年:2015
  • 期:v.36
  • 基金:国家科技支撑计划(2011BAJ09B01);; 国家自然科学基金项目(51378291)
  • 语种:中文;
  • 页:JZJB2015S1015
  • 页数:7
  • CN:S1
  • ISSN:11-1931/TU
  • 分类号:95-101
摘要
固接钢-混凝土组合楼盖相比于传统混凝土楼盖、纯钢结构楼盖及铰接组合楼盖具有跨度大、结构高度小、用钢量少、受力性能好、整体性强等优势。目前,限制大跨度固接组合楼盖推广应用的主要问题是缺乏完善的实用分析计算与设计方法。以某高层建筑综合体底层大跨度结构为实际工程背景,基于内力计算、组合梁截面设计、舒适度验算以及节点设计等方面,研究大跨度固接组合楼盖的实用分析计算与设计方法。研究结果表明:大跨度固接组合楼盖的舒适度验算应采用基于动力响应法的评价标准,主梁梁端的负弯矩区截面的长度约为0.2倍梁长;考虑地震作用组合工况,对主梁负弯矩设计值影响不显著,大跨度固接主梁的内力计算在设计时可以仅考虑竖向静载工况作用。
        The steel-concrete composite floor structure system with fixed beam-column connections has the advantages of larger-span, smaller structural height, less steel tonnage, better mechanical performance and stability when compared with the classic reinforced concrete floor structure,steel floor structure and composite floor structure with hinged beam-column connections. But the composite floor structure system with fixed beam-column connections has not been widely used. One of the main causes to this phenomenon is the lack of complete and reliable analysis and design methods for this structural system. Aiming at this problem,the present study discussed the method of calculating internal forces,designing sections of the fixed primary beam,evaluating the vibration behavior and designing the fixed beam-column connections on the basis of a real engineering case. It is concluded that the evaluation of the vibration behavior of large-span steel-concrete composite floor structure system with fixed beam-column connections should use the dynamic response-based method. It is also suggested that the length of the part using the hogging moment section at the ends of the primary beam can be determined as 0. 2l( l is the length of the beam). In addition,the internal forces of the large-span fixed primary beams can be approximately calculated by considering the vertical static load effect without the influence of the lateral load effect such as the earthquake effect.
引文
[1]聂建国,李盛勇,刘嵘,等.深圳华润中心月牙形中庭大跨钢-混凝土组合结构[J].建筑结构学报,2004,25(6):126-128.(NIE Jianguo,LI Shengyong,LIU Rong,et al.Long-span steel-concrete composite structure of the crescent hall of Shenzhen Huarun Center[J].Journal of Building Structures,2004,25(6):126-128.(in Chinese))
    [2]聂建国,孙彤,温凌燕,等.某会展中心大跨交叉钢-混凝土组合梁系楼盖设计[J].建筑结构学报,2004,25(6):123-125.(NIE Jianguo,SUN Tong,WEN Lingyan,et al.Design of a long-span two-way steel-concrete composite beam floor system for a conference exhibition center[J].Journal of Building Structures,2004,25(6):123-125.(in Chinese))
    [3]聂建国,陶慕轩,黄远,等.钢-混凝土组合结构体系研究新进展[J].建筑结构学报,2010,31(6):71-80.(NIE Jianguo,TAO Muxuan,HUANG Yuan,et al.Research advances of steel-concrete composite structural systems[J].Journal of Building Structures,2010,31(6):71-80.(in Chinese))
    [4]聂建国,陈戈,孙传伟,等.钢-混凝土组合楼盖空间作用的试验研究[J].清华大学学报(自然科学版),2005,45(6):749-752.(NIE Jianguo,CHEN Ge,SUN Chuanwei,et al.Stress reductions in steelconcrete composite slabs in steel frames[J].Journal of Tsinghua University(Science&Technology),2005,45(6):749-752.(in Chinese))
    [5]Nie Jianguo,Tian Chunyu,Cai C S.Effective width of steel-concrete composite beam at ultimate strength state[J].Engineering Structures,2008,30(5):1396-1407.
    [6]Nie Jianguo,Tao Muxuan.Slab spatial composite effect in composite frame systems:I:effective width for ultimate loading capacity[J].Engineering Structures,2012,38(5):171-184.
    [7]Nie Jianguo,Tao Muxuan.Slab spatial composite effect in composite frame systems:II:equivalent stiffness and verifications[J].Engineering Structures,2012,38(5):185-199.
    [8]NBC 1995 National building code of Canada:control of floor vibration[S].Ottawa,Canada:Institute for Research in Construction,1998.
    [9]BS 5400:2005 Steel,concrete and composite bridges:code of practice for design of composite bridges[S].London:BSI,2005.
    [10]AISC DG11 Steel design guide series 11:floor vibration due to human activity[S].Chicago,Illinois:American Institute of Steel Construction,2003.
    [11]SCI P354 Design of floors for vibration:a new approach,revised edition[S].Berkshire:The Steel Construction Institute,2009.