Fabrications and characterizations of high performance 1.2 kV,3.3 kV, and 5.0 kV class 4H–SiC power SBDs
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrications and characterizations of high performance 1.2 kV,3.3 kV, and 5.0 kV class 4H–SiC power SBDs
  • 作者:宋庆文 ; 汤晓燕 ; 袁昊 ; 王悦湖 ; 张艺蒙 ; 郭辉 ; 贾仁需 ; 吕红亮 ; 张义门 ; 张玉明
  • 英文作者:Qing-Wen Song;Xiao-Yan Tang;Hao Yuan;Yue-Hu Wang;Yi-Meng Zhang;Hui Guo;Ren-Xu Jia;Hong-Liang Lv;Yi-Men Zhang;Yu-Ming Zhang;School of Advanced Materials and Nanotechnology, Xidian University;Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xidian University;
  • 英文关键词:4H–Si C;;Schottky-barrier diodes;;breakdown;;differential specific-on resistance
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:School of Advanced Materials and Nanotechnology Xidian University;Key Laboratory of Wide Band Gap Semiconductor Materials and Devices Xidian University;
  • 出版日期:2016-02-24 15:54
  • 出版单位:Chinese Physics B
  • 年:2016
  • 期:v.25
  • 基金:supported by the National Natural Science Foundation of China(Grant Nos.61404098,61176070,and 61274079);; the Doctoral Fund of Ministry of Education of China(Grant Nos.20110203110010 and 20130203120017);; the National Key Basic Research Program of China(Grant No.2015CB759600);; the Key Specific Projects of Ministry of Education of China(Grant No.625010101)
  • 语种:英文;
  • 页:ZGWL201604048
  • 页数:6
  • CN:04
  • ISSN:11-5639/O4
  • 分类号:318-323
摘要
In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H–SiC power Schottky barrier diodes(SBDs)are fabricated with three N-type drift layer thickness values of 10 μm, 30 μm, and 50 μm, respectively. The avalanche breakdown capabilities,static and transient characteristics of the fabricated devices are measured in detail and compared with the theoretical predictions. It is found that the experimental results match well with the theoretical calculation results and are very close to the 4H–SiC theoretical limit line. The best achieved breakdown voltages(BVs) of the diodes on the 10 μm, 30 μm, and 50 μm epilayers are 1400 V, 3320 V, and 5200 V, respectively. Differential specific-on resistances(R_(on-sp)) are 2.1 m?·cm~2,7.34m?·cm~2, and 30.3 m?·cm~2, respectively.
        In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H–SiC power Schottky barrier diodes(SBDs)are fabricated with three N-type drift layer thickness values of 10 μm, 30 μm, and 50 μm, respectively. The avalanche breakdown capabilities,static and transient characteristics of the fabricated devices are measured in detail and compared with the theoretical predictions. It is found that the experimental results match well with the theoretical calculation results and are very close to the 4H–SiC theoretical limit line. The best achieved breakdown voltages(BVs) of the diodes on the 10 μm, 30 μm, and 50 μm epilayers are 1400 V, 3320 V, and 5200 V, respectively. Differential specific-on resistances(R_(on-sp)) are 2.1 m?·cm~2,7.34m?·cm~2, and 30.3 m?·cm~2, respectively.
引文
[1]Kaji N,Niwa H,Suda J and Kimoto T 2015 IEEE Trans.Electron Dev.62 373
    [2]Sung W,Van Brunt E,Baliga B J and Huang A Q 2011 IEEE Electron Dev.Lett.32 880
    [3]Song Q W,Yuan H,Han C,Zhang Y M,Tang X Y,Zhang Y M,Guo H,Zhang Y M,Jia R X and Wang Y H 2015 Sci.China-Tech.Sci.581369
    [4]Song Q W,Zhang Y M,Zhang Y M and Tang X Y 2012 Diamond Relat.Mater.22 42
    [5]Wang Y,Yu C,Miao Z and Shan M G 2015 IET Power Electron.8 672
    [6]Yuan H,Tang X Y,Zhang Y M,Zhang Y M,Song Q W,Yang F and Wu H 2014 Chin.Phys.B 23 057102
    [7]Zhao J H,Alexandrov P and Li X 2003 IEEE Electron Dev.Lett.24402
    [8]Nakamura T,Miyanagi T,Kamata I,Jikimoto T and Tsuchida H 2005IEEE Electron Dev.Lett.26 99
    [9]Wahab Q,Kimoto T,Ellison A,Hallin C,Tuominen M,Yakimova R,Henry A,Bergman J P and Janzen E 1998 Appl.Phys.Lett.72 26
    [10]Morisette D T,Cooper J A,Melloch M R,Dolny G M,Shenoy P M,Zafrani M and Gladish J 2001 IEEE Trans.Electron Dev.48 349
    [11]Huang R H,Chen G,Bai S,Li R,Li Y and Tao Y H 2014 Mater.Sci.Forum.778–780 800
    [12]Vassilevski K,Nikitina I,Horsfall A,Wright N G,O’Neill A G,Hilton K P,Munday A G,Hydes A J,Uren M J and Johnson C M 2007 Mater.Sci.Forum.556–557 873
    [13]Song Q W,Zhang Y M,Zhang Y M,Zhang Q and Lu H L 2010 Chin.Phys.B 19 087202
    [14]Song Q W,Zhang Y M,Han J S,Tanner P,Dimitrijev S,Zhang Y M,Zhang Y M,Tang X Y and Guo H 2013 Chin.Phys.B 22 027302
    [15]Trentin A,Zanchetta P,Wheeler P and Clare J 2012 IET Power Electron.5 1873
    [16]Ying W,Likun X and Kun D 2014 IET Power Electron.7 325
    [17]Zhao J H,Li X,Tone K,Alexandrov P,Pan M and Weiner M 2003Solid-State Electron.47 377
    [18]Kimoto T 2015 Jpn.J.Appl.Phys.54 040103
    [19]Kimoto T,Urushidani T,Kobayashi S and Matsunami Hiroyuki 1993IEEE Electron Dev.Lett.14 548
    [20]Wadaa K,Uchida K,Kimura R,Sakai M,Hatsukawa S,Hiratsuka K,Hirakata N and Mikamura Y 2014 Mater.Sci.Forum.778–780 915
    [21]Bartolf H,Sundaramoorthy V,Mihaila A,Berthou M,Godignon P and Millán J 2014 Mater.Sci.Forum.778 795
    [22]Song Q W,Zhang Y M,Zhang Y M,Chen F P and Tang X Y 2011Chin.Phys.B 20 057301
    [23]Baliga B J 2009 Advanced power rectifier concepts(New York:Springer Science+Business Media,LLC)pp.45–48