班公湖-怒江缝合带西段聂尔错—拉果错地区火山岩锆石U-Pb年龄及其地球化学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zircon U-Pb ages and geochemistry of volcanic rocks in the Nie'er Co-Laguo Co area of the western Bangong Co-Nujiang suture zone
  • 作者:刘海永 ; 曾庆高 ; 旺姆 ; 陈国荣 ; 焦文龙 ; 叶强 ; 李正亮 ; 毛国正
  • 英文作者:LIU Haiyong;ZENG Qinggao;WANG Mu;CHEN Guorong;JIAO Wenlong;YE Qiang;LI Zhengliang;MAO Guozheng;Tibet Institute of Geological Survey;The Second Geological Team, Tibetan Bureau of Geology and Mineral Exploration and Development;Tibet Geology and Mineral Bureau Regional Geological Survey Team;The Western Exploration Group, Tibetan Bureau of Geology and Mineral Exploration and Development;
  • 关键词:班公湖-怒江缝合带 ; 火山岩 ; 锆石U-Pb定年 ; 岩石成因 ; 构造环境
  • 英文关键词:Bangong Co-Nujiang suture zone;;volcanic rock;;zircon U-Pb dating;;petrogenesis;;tectonic setting
  • 中文刊名:ZQYD
  • 英文刊名:Geological Bulletin of China
  • 机构:西藏自治区地质调查院;西藏自治区地质矿产勘查开发局第二地质大队;西藏地勘局区调队;西藏地勘局西勘集团;
  • 出版日期:2019-07-15
  • 出版单位:地质通报
  • 年:2019
  • 期:v.38;No.290
  • 基金:中国地质调查局项目《班公湖-怒江成矿带铜多金属矿资源基地调查》(编号:DD20160026)和《西藏区域地质调查片区总结与服务产品开发》(编号:DD20160345)
  • 语种:中文;
  • 页:ZQYD201907007
  • 页数:10
  • CN:07
  • ISSN:11-4648/P
  • 分类号:60-69
摘要
对出露于班公湖-怒江缝合带西段聂尔错和拉果错地区的火山岩开展了锆石U-Pb定年和岩石地球化学测试,旨在查明该区火山岩的形成时代、岩石成因及构造环境。锆石U-Pb定年结果显示,聂尔错地区流纹岩及拉果错地区英安岩分别形成于112.5Ma和112.3Ma,与区域上大规模展布的早白垩世岩浆作用时代一致。全岩主量、微量元素特征显示,英安岩与流纹岩样品均属于钙碱性系列,且明显富集Th、U,亏损Nb、Ta、Ti等高场强元素。地球化学特征指示英安岩起源于增厚的下地壳部分熔融,而流纹岩是下地壳熔体经历广泛结晶分异作用的产物。研究认为,西藏中部早白垩世晚期大规模岩浆作用形成于碰撞后伸展背景,其深部动力学机制可能与北向俯冲的班公湖-怒江洋壳的板片断离有关。
        In order to ascertain the formation age, rock genesis and tectonic setting of volcanic rocks in the Nie'er Co and Laguo Co areas of the western Bangong Co-Nujiang suture zone, the authors mainly carried out zircon U-Pb dating and petrogeochemical analysis of volcanic rocks. The zircon U-Pb dating results show that the rhyolites in the Nie'er Co area were formed at 112.5 Ma, and the dacite in the Laguo Co area was formed at 112.3 Ma, respectively, consistent with the age of the magmatism extensively distributed in the study area. The characteristics of the main trace elements of the whole rock show that both the dacite and rhyolite samples belong to the calc-alkaline series, and are obviously enriched in Th, U, and depleted in high field strength elements such as Nb, Ta and Ti. Geochemical characteristics indicate that the dacite originated from the partial melting of the thickened lower crust,whereas rhyolite was formed by the extensive crystallization differentiation of the lower crust melts. The authors hold that the largescale magmatism in the late Early Cretaceous in central Tibet formed a background after collision, and the deep dynamic mechanism was probably related to the slab break-off of the northward subduction of Bangong Co-Nujiang oceanic floor.
引文
[1]潘桂棠.初论班公湖-怒江结合带[C]//青藏高原地质文集(12).北京:地质出版社, 1983.
    [2]邱瑞照,周肃,邓晋福,等.西藏班公湖-怒江带西段舍马拉沟蛇绿岩中辉长岩年龄测定:兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 2004, 31(3):262-268.
    [3]潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533.
    [4]Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53(7):3-14.
    [5]Zhu D C, Zhao Z D, Niu Y L, et al. The origin and re-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454.
    [6]范建军,李兴奎,张天羽,等.班公湖-怒江洋中西段汇聚消亡时空重建[M].北京:地质出版社, 2017.
    [7]耿全如,潘桂棠,王立全,等.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 2011, 30(8):1261-1274.
    [8]耿全如,彭志敏,张璋,等.班公湖-怒江成矿带及邻区特提斯演化与成矿地质背景[M].北京:地质出版社, 2012.
    [9]唐菊兴,宋扬,王勤,等.西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床[J].地球学报, 2016, 37(6):663-690.
    [10]唐菊兴,王勤,杨欢欢,等.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报, 2017, 38(5):571-613.
    [11]曲晓明,辛洪波,杜德道,等.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J].地球化学,2012, 41(1):1-14.
    [12]Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet[J]. Chemical Geology,2009, 268:298-312.
    [13]Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:record of a microcontinent and itshistories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255.
    [14]康志强,许继峰,王保弟,等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学, 2009, 34(1):89-104.
    [15]赵元艺,崔玉斌,吕立娜,等.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义[J].岩石学报, 2011, 27(7):2132-2142.
    [16]Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimdodal volcanic rocks from the Maierze Group northern Tibet:constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227(15):148-160.
    [17]吴浩,李才,胡培远,等.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J].地质通报, 2014, 33(11):1804-1814.
    [18]Wu H, Li C, Xu M J, et al. Early cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences,2015, 97:51-66.
    [19]Wu H, Li C, Hu P Y, et al. Early cretaceous(100-105Ma)adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review, 2015, 57(9/10):1172-1188.
    [20]Xu W, Li C, Wang M, et al. Subduction of a spreading ridge within the Bangong Co–Nujiang Tethys Ocean:Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu–Au deposit, western Tibet[J]. Gondwana Research, 2017, 41:128-141.
    [21]Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J].Lithos, 2016, 245:7-17.
    [22]Wu H, Qiangba Z, Li C, et al. Geochronology and Geochemistry of Early Cretaceous Granitic Rocks in the Dongqiao Area, Central Tibet:Implications for Magmatic Origin and Geological Evolution[J].The Journal of Geology, 2018, 126(2):249-260.
    [23]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43.
    [24]Liu Y S, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology,2010, 51:537-571.
    [25]王勤.西藏多龙矿集区美日切错组火山岩成因及与铁格隆南铜(金)矿床成矿的关系[D].成都理工大学硕士学位论文, 2015.
    [26]刘海永.班公湖-怒江成矿带西段“多尼组”火山岩研究[D].成都理工大学硕士学位论文, 2017.
    [27]Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27:745-750.
    [28]Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8:523-548.
    [29]Peecerillo A, Taylor S R. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J].Contributions to Mineralogy and Petrology, 1976, 58(1):63-81.
    [30]Boynton W V. Geochemistry of the rare earth elements:Meteorite studies[C]//Henderson P. Rare Earth Elements Geochemistry.Elsevier, Amsterdam, 1984:63-114.
    [31]Sun W D, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345.
    [32]Bacon C R, Druitt T H. Compositional evolution of the zoned calcalkaline magma chamber of mount Mazama, Crater Lake,Oregon[J]. Contribution to Mineralogy and Petrology, 1988, 98:224-256.
    [33]Ingle S, Weis D, Frey F A. Indian continental crust recovered from Elan Bank, Kerguelen Plateau(ODP Leg 183, Site 1137)[J]. Journal o f Petrology, 2002, 43(7):1241-1257.
    [34]Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting,mantle and crustal,sources:A review[J]. Lithos, 2004, 78(1/2):1-24.
    [35]Tepper J H, Nelson B K, Bergantz G W, et al. Petrology of the Chilliwack batholith, North Cascades, Washington:Generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity[J]. Contribution to Mineralogy and Petrology, 1993, 113:333-351.
    [36]Guffanti M, Clynne M A, Muffler L J P. Thermal and mass implications of magmatic evolution in the Lassen volcanic region,California, and constraints on basalt influx to the lower crust[J].Journalo f Geophysical Research, 1996, 101(B2):3003-3013.
    [37]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990, 347:662-665.
    [38]Castillo P R. Adakite petrogenesis[J]. Lithos, 2012, 134/135(3):304-316.
    [39]吴福元,葛文春,孙德有.中国东部燕山期“埃达克质岩”问题与意义[C]//埃达克质岩及其地球动力学意义学术研讨会论文摘要, 2001:53-55.
    [40]Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J]. Lithos, 1999, 46:411-429.
    [41]Benoit M, Aguillón-Robles A, Calmus Thierry, et al.Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico:implication of mantle and crustal sources during the opening of an asthenospheric window[J]. Journal of Geology, 2002, 110:627-648.
    [42]Dewey J F, Shackelton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Phil. Trans. R. Soc. Lond.,1988, A327:379-413.
    [43]Leier A L, Decelles P G, Kapp P, et al. Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau[J]. Journal of Sedimentary Research, 2007, 77:809-825.
    [44]Xu R H, Sch?rer U, Allègre C J. Magmatism and metamorphism in the Lhasa block(Tibet):a geochronological study[J]. Journal of Geology, 1985, 93:41-57.
    [45]Yin A, Harrison T M. Geologic evolution of the HimalayanTibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000, 28:211-280.
    [46]Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca.110 Ma magmatism in the northern Lhasa Terrane, Tibet:implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168/169:144-159.
    [47]Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group,northern Tibet:constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227:148-160.
    [48]Qu X M, Wang R J, Xin H B, et al. Age and petrogenesis of Atype granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos, 2012, 146/147:264-275.
    [49]Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society of London Special Publications, 1986, 19:67-81.
    [50]Wu H, Sun S, Liu H, et al. An Early Cretaceous slab window beneath central Tibet, SW China:Evidence from OIB-like alkaline gabbros in the Duolong area[J]. Terra Nova, 2019, 31(1):67-75.
    [51]Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J].American Journal of Science, 2019, 319(2):105-121.
    [52]Davies J H, F von Blanckenburg. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129(1/4):85-102.
    [53]杜德道,曲晓明,王根厚,等.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报, 2011, 27(7):1993-2002.
    [54]Wu H, Li C, Chen J, et al. Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithos, 2016, 8(2):141-149.