低磁不锈钢热轧板焊接接头的微观组织和磁性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and magnetic properties of welded joints of low magnetic stainless steel hot-rolled sheet
  • 作者:王任甫 ; 李坤 ; 宋艳磊 ; 李长生 ; 张玉祥
  • 英文作者:WANG Renfu;LI Kun;SONG Yanlei;LI Changsheng;ZHANG Yuxiang;Luoyang Ship Material Research Institute;State Key Laboratory of Rolling and Automation,Northeastern University;
  • 关键词:低磁钢 ; 焊丝 ; 微观组织 ; 枝晶臂 ; 磁性能
  • 英文关键词:low magnetic steel;;welding wire;;microstructure;;dendrite arm;;magnetic properties
  • 中文刊名:ASGT
  • 英文刊名:Journal of University of Science and Technology Liaoning
  • 机构:中国船舶重工集团公司第七二五研究所;东北大学轧制技术及连轧自动化国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:辽宁科技大学学报
  • 年:2019
  • 期:v.42;No.192
  • 基金:国家自然科学基金(51274062)
  • 语种:中文;
  • 页:ASGT201901007
  • 页数:8
  • CN:01
  • ISSN:21-1555/TF
  • 分类号:37-43+74
摘要
设计了低磁不锈钢热轧板双面熔化极惰性气体保护焊的焊丝成分,通过焊接实验,研究了焊接接头的显微组织和磁性能。结果表明:焊缝中心区域的微观组织较熔合线附近明显细化,热影响区晶粒比母材晶粒稍大;焊接接头两侧的一次枝晶臂均沿着温度梯度的方向生长,在焊缝中心线部位相遇,无分型组织出现;焊缝区域的二次枝晶臂间距稳定。焊接接头的室温拉伸和低温冲击断口附近仍为全奥氏体组织,相对磁导率均在1.003以下。
        The composition of welding wire for double-sided and gas-shielded welding of low magnetic stainless steel hot-rolled sheet was designed. Through carrying out welding experiments,the microstructure and magnetic properties of the welded joint were investigated. The investigation results show that the microstructure in the center area of the weld is finer than that nearby the fusion line,and the grains in the heat affected zone look slightly coarser compared to those in based material. The primary dendrite arms on both sides of the welding joint grow along the directions of the temperature gradients,which meet each other at the centerline of the weld without appearance of parting structures,and the secondary dendrite arm spacing is stable in all area of the weld zone. The microstructure near the fracture of the welded joint remains full austenite after roomtemperature tensile tests and low-temperature impact tests,with relative magnetic permeability value being lower than 1.003.
引文
[1]李长生,马彪,宋艳磊,等.无磁钢的研究概况和我国无磁钢的发展思路[J].河南冶金,2014,22(1):1-7.
    [2]SONG Y L,LI C S,LI B Z,et al.Microstructure characterisation of Fe-21Cr-15Ni-Nb-V non-magnetic austenitic stainless steel during hot deformation[J].Materials Science and Technology,2018,34(14):1639-1648.
    [3]LIU J,CHEN C,FENG Q,et al.Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel:an in-situ,TEM study[J].Materials Science and Engineering A,2017,703:236-243.
    [4]KOYAMA M,LEE T,LEE C S,et al.Grain refinement effect on cryogenic tensile ductility in a Fe-Mn-C twinning-induced plasticity steel[J].Materials and Design,2013,49:234-241.
    [5]MA B,LI C S,ZHENG J J,et al.Strain hardening behavior and deformation substructure of Fe-20/27Mn-4Al-0.3C non-magnetic steels[J].Materials and Design,2016,92:313-321.
    [6]KIANERSI D,MOSTAFAEI A,AMADEH A A.Resistance spot welding joints of AISI 316L austenitic stainless steel sheets:Phase transformations,mechanical properties and microstructure characterizations[J].Materials&Design,2014,61:251-263.
    [7]KUMAR A,SONI R K,GANESH P,et al.A study on low magnetic permeability gas tungsten arc weldment of AISI 316LN stainless steel for application in electron accelerator[J].Materials and Design,2014,53:86-92.
    [8]SASIKALA G,RAY S K,MANNAN S L.Kinetics of transformation of delta ferrite during creep in a type 316(N)stainless steel weld metal[J].Materials Science and Engineering A,2003,359(1-2):86-90.
    [9]KAKHOVSKII N I,YUSHCHENKO K A,MON'KO GG,et al.The effect of nitrogen on the properties of austenitic steels having high strength at low temperatures[J].Strength of Materials,1974,6(6):749-752.
    [10]ARAKI Y,SANO H,KOMINAMI M,et al.Study on the Cr-Ni austenitic filler metal containing Mn[J].Transactions of the Japan Welding Society,1982,13:32-40.
    [11]KUMAR A,SONI R K,GANESH P,et al.A study on low magnetic permeability gas tungsten arc weldment of AISI 316LN stainless steel for application in electron accelerator[J].Materials and Design,2014,53(1):86-92.
    [12]BROOKS J A,THOMPSON A W.Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds[J].Metallurgical Reviews,1991,36(1):16-44.
    [13]MUKHERJEE M,PAL T K.Evaluation of microstructural and mechanical properties of Fe-16Cr-1Ni-9Mn-0.12N austenitic stainless steel welded joints[J].Materials Characterization,2017,131:406-424.
    [14]YOON J H,YOON E P,LEE B S.Correlation of chemistry,microstructure and ductile fracture behaviours of niobium-stabilized austenitic stainless steel at elevated temperature[J].Scripta Materialia,2007,57(1):25-28.
    [15]VASHISHTHA H,TAIWADE R V,SHARMA S,et al.Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels[J].Journal of Manufacturing Processes,2017,25:49-59.
    [16]K?SE C,KA?AR R.The effect of preheat and post weld heat treatment on the laser weldability of AISI 420martensitic stainless steel[J].Materials and Design,2014,64:221-226.
    [17]ALALI M,TODD I,WYNNE B P.Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel[J].Materials and Design,2017,130:488-500.
    [18]LIENERT T J,LIPPOLD J C.Improved weldability diagram for pulsed laser welded austenitic stainless steels[J].Science and Technology of Welding and Joining,2013,8(1):1-9.
    [19]CHOWDHURY S H,CHEN D L,BHOLE S D,et al.Fiber laser welded AZ31 magnesium alloy:the effect of welding speed on microstructure and mechanical properties[J].Metallurgical and Materials Transactions A,2012,43(6):2133-2147.
    [20]HAUSER M,WENDLER M,FABRICHNAYA O,et al.Anomalous stabilization of austenitic stainless steels at cryogenic temperatures[J].Materials Science and Engineering A,2016,675:415-420.
    [21]MA B,LI C S,HAN Y H,et al.γ→α′Martensitic transformation and magnetic property of cold rolled Fe-20Mn-4Al-0.3C steel[J].Journal of Magnetism and Magnetic Materials,2016,419:249-254.