水热对三峡水库消落带退耕稻田土壤有机碳矿化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Soil Moisture and Temperature on Organic Carbon Mineralization of Abandoned Paddy Soil in the Hydro-fluctuation Belt of the Three Gorges Reservoir
  • 作者:唐江 ; 丁长欢 ; 樊晶晶 ; 连茂山 ; 慈恩 ; 王子芳 ; 谢德体
  • 英文作者:TANG Jiang;DING Changhuan;FAN Jingjing;LIAN Maoshan;CI En;WANG Zifang;XIE Deti;College of Resources and Environment, Southwest University;Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area;
  • 关键词:土壤有机碳 ; 矿化 ; 水分 ; 温度 ; 三峡水库
  • 英文关键词:Soil organic carbon;;Mineralization;;Soil moisture;;Temperature;;Three Gorges Reservoir
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:西南大学资源环境学院;重庆市三峡水库农业面源污染控制工程技术研究中心;
  • 出版日期:2016-12-15
  • 出版单位:土壤
  • 年:2016
  • 期:v.48;No.286
  • 基金:国家自然科学基金项目(41301245);; 国家科技基础性工作专项(2014FY110200A13);; 中国科学院战略性先导科技专项(XDA05050506);; 中央高校基本科研业务费专项(XDJK2013B043)资助
  • 语种:中文;
  • 页:TURA201606020
  • 页数:7
  • CN:06
  • ISSN:32-1118/P
  • 分类号:143-149
摘要
采用模拟培养的方法,研究了不同水热条件对三峡水库消落带退耕稻田土壤有机碳(SOC)矿化的影响。试验共设3个培养温度(10、20和30℃)和4个水分梯度(40%田间持水量(WHC)、70%WHC、100%WHC和浅层淹水)。结果表明:1在66天培养期内,各培养温度(10~30℃)下,70%WHC、100%WHC和浅层淹水处理之间的SOC累积矿化量均无明显差异,其中10℃培养时40%WHC处理下的累积矿化量要显著低于70%WHC和100%WHC水分处理(P<0.05),但与浅层淹水无明显差异,而20℃和30℃培养时40%WHC处理下的累积矿化量则要显著低于其他水分处理,表明相较于70%WHC的水分处理,40%WHC水分处理会抑制消落带退耕稻田SOC矿化,而高水分(100%WHC和浅层淹水)对SOC矿化则无明显促进和抑制作用。2在相同水分条件下,消落带退耕稻田SOC累积矿化量均随培养温度升高而增加。3高温下各水分处理之间的温度敏感性无显著差异,而低温下水分对温度敏感性有显著影响,低温浅层淹水处理下的Q10为2.33,显著高于40%WHC处理,与70%WHC和100%WHC处理之间无明显差异。且随着温度升高,浅层淹水下消落带退耕稻田SOC矿化的温度敏感性显著降低,而在土壤含水量≤100%WHC下则无明显变化。温度和水分均能显著影响SOC矿化,但二者无明显的交互效应。4双库一级矿化动力学模型拟合结果表明,水分和温度通过影响消落带退耕稻田土壤易分解有机碳含量和难分解有机碳的矿化速率,从而影响SOC矿化。
        An incubation experiment was conducted in the laboratory to investigate the effects of soil moisture and temperature on soil organic carbon(SOC) mineralization of abandoned purple paddy soil in the hydro-fluctuation belt of the Three Gorges Reservoir. Three incubation temperatures(10, 20 and 30℃) and four moisture levels(40% water holding capacity(WHC), 70%WHC, 100%WHC and shallow submerged condition) were designed in the experiment. The results showed that: 1) During the entire incubation period(66 d), there were no significant differences in SOC cumulative mineralization amounts among 70%WHC, 100%WHC and shallow submerged conditions at the three temperatures(10–30℃). At 10℃ incubation, SOC cumulative mineralization amount at 40%WHC treatment was significantly lower than those of 70%WHC and 100%WHC treatments(P<0.05), but there was no significant difference between shallow submerged and 40%WHC conditions. SOC cumulative mineralization amounts of 40%WHC treatments at 20℃ and 30℃ incubation were significantly lower than those of other treatments. So, it indicated that compared to 70%WHC treatment, 40% WHC treatment had negative-effects on SOC cumulative mineralization of abandoned paddy soil, but high moisture(100%WHC and shallow submerged condition) had no significant promoting or inhibiting effects to SOC mineralization. 2) Under the same soil moisture condition, SOC cumulative mineralization amounts of abandoned paddy soil in the hydro-fluctuation belt increased as temperature increasing. 3) Under higher temperature, the temperature sensitivity had no significant difference in treatments under different soil moisture conditions, but soil moisture significantly influenced temperature sensitivity under lower temperature. The Q10 under shallow submerged condition was 2.33, significantly higher than 40%WHC treatment, but had no significant difference with 70%WHC or 100%WHC treatment. With the increase of temperature, temperature sensitivity was significantly decreased under shallow submerged condition, but it changed inconspicuously when soil moisture content was less than 100%WHC treatment. Both temperature and moisture could affect SOC mineralization significantly, but they had no significant interaction effects. 4) Two-pool first-order model indicated that temperature and soil moisture influenced SOC mineralization through influencing the content of labile SOC fraction and the mineralization rate of recalcitrant SOC fraction.
引文
[1]刘云凯,张彦东,孙海龙.干湿交替对东北温带次生林与落叶松人工林土壤有机碳矿化的影响[J].水土保持学报,2010,24(5):213–222
    [2]Davidson E A,Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J].Nature,2006,440(7081):165–173
    [3]米迎宾,杨劲松,姚荣江,等.不同措施对滨海盐渍土壤呼吸、电导率和有机碳的影响[J].土壤学报,2016,53(3):612–620
    [4]唐玉姝,王磊,席雪飞,等.典型气候/环境因子变化对九段沙湿地碳固定潜力的影响[J].农业环境科学学报,2013,32(4):874–880
    [5]Leirós M C,Trasar-Cepeda C,Seoane S,et al.Dependence of mineralization of soil organic matter on temperature and moisture[J].Soil Biology and Biochemistry,1999,31(3):327–335
    [6]康熙龙,张旭辉,张硕硕,等.旱地土壤施用生物质炭的后效应——水分条件对土壤有机碳矿化的影响[J].土壤,2016,48(1):1–7
    [7]Devêvre O C,Horwáth W R.Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures[J].Soil Biology and Biochemistry,2000,32(32):1 773–1 785
    [8]张薇,王子芳,王辉,等.土壤水分和植物残体对紫色水稻土有机碳矿化的影响[J].植物营养与肥料学报,2007,13(6):1 013–1 019
    [9]黄东迈,朱培立,王志明,等.旱地和水田有机碳分解速率的探讨与质疑[J].土壤学报,1998,35(4):482–492
    [10]王丹,吕瑜良,徐丽,等.水分和温度对若尔盖湿地和草甸土壤碳矿化的影响[J].生态学报,2013,33(20):6 436–6 443
    [11]杨继松,刘景双,孙丽娜.温度、水分对湿地土壤有机碳矿化的影响[J].生态学杂志,2008,27(1):38–42
    [12]Reichstein M,Bednorz F,Broll G,et al.Temperature dependence of carbon mineralization:conclusions from a long-term incubation of subalpine soil samples[J].Soil Biology and Biochemistry,2000,32(7):947–958
    [13]Ouyang X J,Zhou G Y,Huang Z L,et al.Effect of N and P addition on soil organic C potential mineralization in forest soils in South China[J].Journal of Environmental Sciences,2008,20(9):1 082–1 089
    [14]Vance E D,Brooks P C,Jenkinson D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987,19(6):703–707
    [15]中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978:118–119
    [16]李海鹰,潘剑君,孙波.土壤水分对水稻土和菜园土有机碳分解的影响[J].土壤通报,2007,38(5):853–856
    [17]郝瑞军,李忠佩,车玉萍,等.好气与淹水条件下水稻土各粒级团聚体有机碳矿化量[J].应用生态学报,2008,19(9):1 944–1 950
    [18]唐国勇,童成立,苏以荣,等.含水量对14C标记秸秆和土壤原有有机碳矿化的影响[J].中国农业科学,2006,39(3):538–543
    [19]王嫒华,苏以荣,李杨,等.水田和旱地土壤有机碳周转对水分的响应[J].中国农业科学,2012,45(2):266–274
    [20]Sahrawat K L.Organic matter accumulation in submerged soils[J].Advances in Agronomy,2003,81(3):169–201
    [21]卢锐,彭小英,刘以珍,等.水热因素对城乡梯度森林土壤碳矿化的影响[J].南昌大学学报(理科版),2015,39(2):199–204
    [22]孙中林,吴金水,葛体达,等.土壤质地和水分对水稻土有机碳矿化的影响[J].环境科学,2009,30(1):214–220
    [23]Yang Q P,Xu M,Liu H S,et al.Impact factors and uncertainties of the temperature sensitivity of soil respiration[J].Acta Ecologica Sinica,2011,31(8):2 301–2 311
    [24]曹生奎,曹广超,陈克龙,等.青海湖高寒湿地土壤有机碳含量变化特征分析[J].土壤,2013,45(3):392–398
    [25]Liu Y P,Tang Y P,Lu Q,et al.Effects of temperature and land use change on soil organic carbon mineralization[J].Journal of Anhui Agriculture Sciences,2011,39(7):3 896–3 927
    [26]王苑,宋新山,王君.干湿交替对土壤碳库和有机碳矿化的影响[J].土壤学报,2014,51(2):342–350
    [27]Leifeld J,Fuhrer J.The temperature response of CO2production from bulk soils and soil fractions is related to soil organic matter quality[J].Biogeochemistry,2005,75(3):433–453