强化植物修复重金属污染土壤的策略及其机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Augmentation Strategies and Mechanisms in the Phytoremediation of Heavy Metal-contaminated Soil
  • 作者:袁金玮 ; 陈笈 ; 陈芳 ; 刘万宏
  • 英文作者:YUAN Jin-wei;CHEN Ji;CHEN Fang;LIU Wan-hong;School of Chemistry and Chemical Engineering,Chongqing University of Science and Technology,Chongqing Key Laboratory of Industrial Fermentation Microorganism;
  • 关键词:植物修复 ; 重金属 ; 污染土壤 ; 强化策略 ; 机制
  • 英文关键词:phytoremediation;;heavy metal;;contaminated soil;;augmentation strategies;;mechanisms
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:重庆科技学院化学化工学院工业发酵微生物重庆市重点实验室;
  • 出版日期:2018-09-25 14:53
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.318
  • 基金:重庆市教委科学技术研究项目(KJ1501321,KJ1601323);; 工业发酵微生物重庆市重点实验室开放基金资助项目(LIFM201714)
  • 语种:中文;
  • 页:SWJT201901018
  • 页数:11
  • CN:01
  • ISSN:11-2396/Q
  • 分类号:126-136
摘要
重金属对生态环境、农业生产、人类健康等诸多方面造成重要危害。植物修复因其具有经济有效、绿色生态等优点,已经成为土壤重金属污染修复研究领域的热点。由于植物重金属毒害、修复耗时过长等因素致使植物修复技术受限于研究阶段而不能广泛应用于实践。采用科学合理的强化措施提高植物修复的效率可能是解决该矛盾的关键之一。讨论了根瘤菌、丛枝菌根真菌、溶磷微生物和内生真菌构建的微生物-植物共生系统在强化植物修复过程中的具体应用;概述了EDTA、EDDS等螯合剂在改变土壤中重金属可溶态,促进重金属从土壤向植株转运的重要作用;介绍了植物中编码金属转运蛋白、金属硫蛋白、植物螯合肽等与重金属转运和代谢相关的基因在植物修复领域的实际应用;归纳了上述强化策略主要机制为微生物促进植物生长、缓解重金属植物毒性以及提高了土壤中重金属生物利用度,从而促进重金属在富集植物中积累和植物生物量的增加;最后总结并展望了植物修复强化技术在今后研究的重点及存在的问题。综述植物修复技术采用的主要强化策略及其机制,旨在为利用植物修复技术治理土壤重金属污染提供重要参考。
        Heavy metal pollution has posed a harmful influence on ecological environment,agricultural production,human health andmany other aspects. Phytoremediation,a cost-effective and green ecological biotechnology,has been a research focus in the remediation ofheavy metal-contaminated soil. Actually,most phytoremediation cases were limited to the lab research due to the factors such as heavy metaltoxicity of plants and time consuming during the remediation process. Reasonable augmentation measures may enhance the phytoremediationefficiency,which may be a key to solve the problem mentioned above. Rhizobium,arbuscular mycorrhiza fungi,phosphate-solubilizingmicrobe,and endophytic fungi may construct the microbe-plants symbiotic system with plants as host,and the application of such microbeplants symbiotic system in phytoremediation field is discussed. Meanwhile,the function of chelating agents for enhancing phytoremediationefficiency is reviewed,for example,EDTA and EDDS etc.,with the ability to change the heavy metal solubility in the soil,prompt theheavy metals to transfer into plants from the soil. Genes encoding proteins involved in heavy metals transfer and metabolism,including metaltransporter protein,metallothionein,and phytochelatins,are introduced about their applications in phytoremediation. The main mechanismsof the above-mentioned augmentation strategies are summarized as microbes promoting plant growth,alleviating the toxicity of heavy metalplants,and increasing the bioavailability of heavy metals in the soil,thereby promoting the over-accumulation of heavy metals in plants andthe increase of plant biomass. Finally,the key research points and existing problems in phytoremediation augmentation technology in futureare summarized and forecasted. This article systematically reviews the main augmentation strategies and mechanisms used in phytoremediationtechnology,aiming at providing an important reference for the use of phytoremediation technology to solve soil contamination by heavy metal.
引文
[1]Ali H, Khan E, Sajad MA. Phytoremediation of heavy metalsconcepts and applications[J]. Chemosphere, 2013, 91(7):869-881.
    [2]Duan Q, Lee J, Liu Y, et al. Distribution of heavy metal pollutionin surface soil samples in China:a graphical review[J]. BullEnviron Contam Toxicol, 2016, 97(3):303-309.
    [3]Li Z, Ma Z, van der Kuijp TJ, et al. A review of soil heavymetal pollution from mines in China:pollution and health riskassessment[J]. Sci Total Environ, 2014, 468:843-853.
    [4]Wuana RA, Okieimen FE. Heavy metals in contaminated soils:areview of sources, chemistry, risks and best available strategies forremediation[J]. ISRN Ecology, 2011. doi:10.5402/2011/402647.
    [5]Mahar A, Wang P, Ali A, et al. Challenges and opportunitiesin the phytoremediation of heavy metals contaminated soils:areview[J]. Ecotoxicol Environ Safety, 2016, 126:111-121.
    [6]Sarma H. Metal hyperaccumulation in plants:a review focusingon phytoremediation technology[J]. Journal of EnvironmentalScience and Technology, 2011, 4(2):118-138.
    [7]Weyens N, Thijs S, Popek R, et al. The role of plant-microbeinteractions and their exploitation for phytoremediation of airpollutants[J]. Int J Mol Sci, 2015, 16(10):25576-25604.
    [8]Teng Y, Wang X, Li L, et al. Rhizobia and their bio-partners asnovel drivers for functional remediation in contaminated soils[J].Frontiers in Plant Science, 2015, 6(32):1-11.
    [9]Yu X, Li Y, Li Y, et al. Pongamia pinnata inoculated withBradyrhizobiumLiaoningensePZHK1showspotentialforphytoremediation of mine tailings[J]. Applied Microbiol&Biotechnol, 2017, 101(4):1739-1751.
    [10]Chen WM, Wu CH, James EK, et al. Metal biosorption capability ofCupriavidus taiwanensis and its effects on heavy metal removal bynodulated Mimosa pudica[J]. J Hazard Mater, 2008, 151(2):364-371.
    [11]G?hre V, Paszkowski U. Contribution of the arbuscular mycorrhizalsymbiosis to heavy metal phytoremediation[J]. Planta, 2006,223(6):1115-1122.
    [12]Meier S, Borie F, Bolan N, et al. Phytoremediation of metal-pollutedsoils by arbuscular mycorrhizal fungi[J]. Critical Reviews inEnvironmental Science and Technology, 2012, 42(7):741-775.
    [13]Yang Y, Liang Y, Han X, et al. The roles of arbuscular mycorrhizalfungi(AMF)in phytoremediation and tree-herb interactions in Pbcontaminated soil[J]. Sci Rep, 2016, 6:20469.
    [14]Leung H, Ye Z, Wong M. Interactions of mycorrhizal fungi withPteris vittata(As hyperaccumulator)in as-contaminatedsoils[J]. Environmental Pollution, 2006, 139(1):1-8.
    [15]Giasson P, Jaouich A, Cayer P, et al. Enhanced phytoremediation:a study of mycorrhizoremediation of heavy metal-contaminatedsoil[J]. Remediation Journal, 2006, 17(1):97-110.
    [16]Gupta P, Kumar V. Value added phytoremediation of metal stressedsoils using phosphate solubilizing microbial consortium[J].World J Microbiol Biotechnol, 2017, 33(1):9.
    [17]Oves M, Khan MS, Zaidi A. Chromium reducing and plant growthpromoting novel strain Pseudomonas aeruginosa OSG41 enhancechickpea growth in chromium amended soils[J]. EuropeanJournal of Soil Biology, 2013, 56:72-83.
    [18]Li K, Ramakrishna W. Effect of multiple metal resistant bacteriafrom contaminated lake sediments on metal accumulation and plantgrowth[J]. J Hazard Mater, 2011, 189(1):531-539.
    [19]Jeong S, Moon HS, Nam K, et al. Application of phosphatesolubilizingbacteriaforenhancingbioavailabilityandphytoextraction of cadmium(Cd)from polluted soil[J].Chemosphere, 2012, 88(2):204-210.
    [20]Syranidou E, Christofilopoulos S, et al. Exploitation of endophyticbacteria to enhance the phytoremediation potential of the wetlandhelophyte Juncus acutus[J]. Front Microbiol, 2016, 7:1016.
    [21]Khan AR, Ullah I, Khan AL, et al. Improvement in phytoremediation potential of Solanum nigrum under cadmium contaminationthrough endophytic-assisted Serratia sp. RSC-14 inoculation[J].Environ Sci Pollut Res Int, 2015, 22(18):14032-14042.
    [22]Weyens N, Beckers B, Schellingen K, et al. The potential of the Niresistant TCE-degrading pseudomonas putida W619-TCE to reducephytotoxicity and improve phytoremediation efficiency of poplarcuttings on a Ni-TCECo-Contamination[J]. International Journalof Phytoremediation, 2015, 17(1-6):40-48.
    [23]Ma Y, Rajkumar M, Zhang C, et al. Beneficial role of bacterialendophytes in heavy metal phytoremediation[J]. Journal ofEnvironmental Management, 2016, 174:14-25.
    [24]Vassil AD, Kapulnik Y, Raskin I, et al. The role of EDTA in leadtransport and accumulation by Indian mustard[J]. Plant Physiol,1998, 117(2):447-453.
    [25]Luo J, Qi S, Gu XW, et al. An evaluation of EDTA additions forimproving the phytoremediation efficiency of different plants undervarious cultivation systems[J]. Ecotoxicology, 2016, 25(4):646-654.
    [26]SouzaLA,PiottoFA,NogueirolRC,etal.Useofnonhyperaccumulator plant species for the phytoextraction of heavymetals using chelating agents[J]. Scientia Agricola, 2013, 70(4):290-295.
    [27]Attinti R, Barrett KR, Datta R, et al. Ethylenediaminedisuccinicacid(EDDS)enhances phytoextraction of lead by vetivergrass from contaminated residential soils in a panel study in thefield[J]. Environmental Pollution, 2017, 225:524-533.
    [28]Meers E, Ruttens A, Hopgood M, et al. Comparison of EDTA andEDDS as potential soil amendments for enhanced phytoextractionof heavy metals[J]. Chemosphere, 2005, 58(8):1011-1022.
    [29]Ko?odyńska D. Chelating agents of a new generation as analternative to conventional chelators for heavy metal ions removalfrom different waste waters[M]//Ning RY Expanding Issues inDesalination, inTech Publishers, 2011:339-370.
    [30]Wu Q, Cui Y, Li Q, et al. Effective removal of heavy metals fromindustrial sludge with the aid of a biodegradable chelating LigandGLDA[J]. J Hazard Mater, 2015, 283:748-754.
    [31]袁江,李晔,许剑臣,等.可生物降解螯合剂GLDA和植物激素共同诱导植物修复重金属污染土壤研究[J].武汉理工大学学报, 2016, 38(2):82-86.
    [32]Agnello AC, Huguenot D, van Hullebusch ED, et al. Citric acidand Tween?80-assistedphytoremediationofaco-contaminatedsoil:alfalfa(Medicago sativa L.)performance and remediationpotential[J]. Environ Sci Pollut Res Int, 2016, 23(9):9215-9226.
    [33]Sun RL, Zhou QX, Jin CX. Cadmium accumulation in relation toorganic acids in Leaves of Solanum nigrum L. as a newly foundcadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1-2):125-134.
    [34]ZaheerIE,AliS,RizwanM,etal.CitricacidassistedphytoremediationofcopperbyBrassicanapusL.[J].Ecotoxicology and Environmental Safety, 2015, 120:310-317.
    [35]Kr?mer U, Pickering IJ, Prince RC, et al. Subcellular Localizationand speciation of nickel in hyperaccumulator and non-accumulatorThlaspi species[J]. Plant Physiol, 2000, 122(4):1343-1354.
    [36]Sarret G, Saumitou-Laprade P, Bert V, et al. Forms of zincaccumulated in the hyperaccumulator Arabidopsis halleri[J].Plant Physiol, 2002, 130(4):1815-1826.
    [37]Sriprang R, Hayashi M, Ono H, et al. Enhanced accumulationof Cd2+by a Mesorhizobium sp. transformed with a gene fromArabidopsis thaliana coding for phytochelatin synthase[J]. ApplEnviron Microbiol, 2003, 69(3):1791-1796.
    [38]Ike A, Sriprang R, Ono H, et al. Bioremediation of cadmiumcontaminated soil using symbiosis between Leguminous plant andrecombinant rhizobia with the MTL4 and the PCS genes[J].Chemosphere, 2007, 66(9):1670-1676.
    [39]Ike A, Sriprang R, Ono H, et al. Promotion of metal accumulation innodule of Astragalus sinicus by the expression of the iron-regulatedtransporter gene in Mesorhizobium huakuii subsp. rengei B3[J].J Biosci Bioeng, 2008, 105(6):642-648.
    [40]Wu CH, Wood TK, Mulchandani A, et al. Engineering plantmicrobe symbiosis for rhizoremediation of heavy metals[J]. ApplEnviron Microbiol, 2006, 72(2):1129-1134.
    [41]Lasat MM, Baker AJ, Kochian LV. Physiological characterizationofrootZn2+absorptionandtranslocationtoshootsinZnhyperaccumulator and nonaccumulator species of Thlaspi[J].Plant Physiol, 1996, 112(4):1715-1722.
    [42]Pence NS, Larsen PB, et al. The molecular physiology of heavymetal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Proc Natl Acad Sci USA, 2000, 97(9):4956-4960.
    [43]Rodríguez-llorente ID, Lafuente A, et al. Engineering copperhyperaccumulation in plants by expressing a prokaryotic copC gene[J]. Environ Sci Technol, 2012, 46(21):12088-12097.
    [44]Zanella L, Fattorini L, Brunetti P, et al. Overexpression ofAtPCS1 in tobacco increases arsenic and arsenic plus cadmiumaccumulation and detoxification[J]. Planta, 2016, 243(3):605-622.
    [45]Guo J, Dai X, Xu W, et al. Overexpressing GSH1 and AsPCS1simultaneously increases the tolerance and accumulation ofcadmium and arsenic in Arabidopsis thaliana[J]. Chemosphere,2008, 72(7):1020-1026.
    [46]Zhu YL, Pilon-Smits EA, et al. Overexpression of glutathionesynthetase in Indian mustard enhances cadmium accumulation andtolerance[J]. Plant Physiol, 1999, 119(1):73-80.
    [47]Bizily SP, Rugh Cl, Summers AO, et al. Phytoremediation ofmethylmercury pollution:merB expression in Arabidopsis thalianaconfers resistance to organomercurials[J]. Proc Natl Acad SciUSA, 1999, 96(12):6808-6813.
    [48]Bizily SP, Rugh Cl, Meagher RB. Phytodetoxification of hazardousorganomercurials by genetically engineered plants[J]. NatureBiotechnology, 2000, 18(2):213-217.
    [49]Nagata T, Kiyono M, Pan-Hou H. Engineering expressionofbacterialpolyphosphatekinaseintobaccoformercuryremediation[J]. Appl Microbiol Biotechnol, 2006, 72(4):777-782.
    [50]Nozoye T, Otani M, Senoura T, et al. Overexpression of barleynicotianamine synthase 1 confers tolerance in the sweet potato toiron deficiency in calcareous soil[J]. Plant and Soil, 2017, 418(1-2):75-78.
    [51]Sobariu Dl, Fertu DIT, Diaconu M, et al. Rhizobacteria and plantsymbiosis in heavy metal uptake and its implications for soilbioremediation[J]. New Biotechnology, 2017,(39):125-134.
    [52]Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria andtheir role in plant growth promotion:a review[J]. Annals ofMicrobiology, 2010, 60(4):579-598.
    [53]Saha M, Sarkar S, Sarkar B, et al. Microbial siderophores and theirpotential applications:a review[J]. Environ Sci Pollut Res Int,2016, 23(5):3984-3999.
    [54]Glick BR. Bacteria with ACC deaminase can promote plant growthand help to feed the world[J]. Microbiological Research, 2014,169(1):30-39.
    [55]Li W, Wang D, Hu F, et al. Exogenous IAA treatment enhancesphytoremediation of soilcontaminated with phenanthreneby promoting soil enzyme activity and increasing microbialbiomass[J]. Environ Sci Pollut Res Int, 2016, 23(11):10656-10664.
    [56]Revillas J, Rodelas B, Pozo C, et al. Production of B-group vitaminsby two azotobacter strains with phenolic compounds as sole carbonsource under diazotrophic and adiazotrophic conditions[J].Journal of Applied Microbiology, 2000, 89(3):486-493.
    [57]Cattelan A, Hartel P, Fuhrmann J. Screening for plant growthpromoting rhizobacteria to promote early soybean growth[J]. SoilScience Society of America Journal, 1999, 63(6):1670-1680.
    [58]Yadav S. Heavy metals toxicity in plants:an overview on the roleof glutathione and phytochelatins in heavy metal stress tolerance ofplants[J]. South African Journal of Botany, 2010, 76(2):167-179.
    [59]Hossain MA, Piyatida P, da Silva JAT, et al. Molecular mechanismof heavy metal toxicity and tolerance in plants:central roleof glutathione in detoxification of reactive oxygen species andmethylglyoxal and in heavy metal chelation[J]. Journal ofBotany, 2012. doi:10.1155/2012/872875.
    [60]Wan Y, Luo S, Chen J, et al. Effect of endophyte-infection on growthparameters and Cd-induced phytotoxicity of Cd-hyperaccumulatorSolanum nigrum L.[J]. Chemosphere, 2012, 89(6):743-750.
    [61]Di Baccio D, Galla G, Bracci T, et al. Transcriptome analyses ofpopulus x euramericana clone I-214 Leaves exposed to excesszinc[J]. Tree Physiology, 2011, 31(12):1293-1308.
    [62]Srivastava S, Verma PC, Chaudhry V, et al. Influence of inoculationof arsenic-resistant Staphylococcus arlettae on growth and arsenicuptake in Brassica juncea(L.)Czern. Var. R-46[J]. J HazardMater, 2013, 262:1039-1047.
    [63]Shin M-N, Shim J, You Y, et al. Characterization of lead resistantendophytic Bacillus sp. MN3-4 and its potential for promotinglead accumulation in metal hyperaccumulator Alnus firma[J]. JHazard Mater, 2012, 199:314-320.
    [64]Dimkpa CO, Svato?A, et al. Involvement of siderophores inthe reduction of metal-induced inhibition of auxin synthesis inStreptomyces spp.[J]. Chemosphere, 2008, 74(1):19-25.
    [65]Ove?ka M, Taká?T. Managing heavy metal toxicity stress inplants:biological and biotechnological tools[J]. BiotechnologyAdvances, 2014, 32(1):73-86.
    [66]DalCorso G, Fasani E, Furini A. Recent advances in the analysisof metal hyperaccumulation and hypertolerance in plants usingproteomics[J]. Frontiers in Plant Science, 2013, 4:280.
    [67]Eggleton J, Thomas KV. A review of factors affecting the releaseand bioavailability of contaminants during sediment disturbanceevents[J]. Environment International, 2004, 30(7):973-980.
    [68]Tagliavini M, Masia A, Quartieri M. Bulk soil pH and rhizospherepH of peach trees in calcareous and alkaline soils as affected by theform of nitrogen fertilizers[J]. Plant and Soil, 1995, 176(2):263-271.
    [69]Saravanan V, Madhaiyan M, Thangaraju M. Solubilization of zinccompounds by the diazotrophic, plant growth promoting bacteriumGluconacetobacter diazotrophicus[J]. Chemosphere, 2007, 66(9):1794-1798.
    [70]Suthar V, Memon KS, et al. EDTA-enhanced phytoremediationof contaminated calcareous soils:heavy metal bioavailability,extractability, and uptake by maize and sesbania[J]. EnvironMonit Assess, 2014, 186(6):3957-3968.
    [71]Glińska S, Michlewska S, et al. The effect of EDTA and EDDSon lead uptake and Localization in hydroponically grown Pisum sativum L.[J]. Acta Physiol Plant, 2014, 36(2):399-408.
    [72]Li Y, Iqbal M, Zhang Q, et al. Two Silene vulgaris coppertransporters residing in different cellular compartments confercopper hypertolerance by distinct mechanisms when expressedin Arabidopsis thaliana[J]. New Phytologist, 2017, 215(3):1102-1114.
    [73]Lin YF, Hassan Z, Talukdar S, et al. Expression of the ZNT1 zinctransporter from the metal hyperaccumulator Noccaea caerulescensconfers enhanced zinc and cadmium tolerance and accumulation toArabidopsis thaliana[J]. PLoS One, 2016, 11(3):e0149750.
    [74]Yokosho K, Yamaji N, et al. An aluminum-inducible IREG gene isrequired for internal detoxification of aluminum in buckwheat[J].Plant Cell Physiol, 2016, 57(6):1169-1178.
    [75]DasN,BhattacharyaS,MaitiMK.Enhancedcadmiumaccumulation and tolerance in transgenic tobacco overexpressingrice metal tolerance protein gene OsMTP1 is promising forphytoremediation[J]. Plant Physiol Biochem, 2016, 105:297-309.
    [76]Oomen RJ, Wu J, Lelièvre F, et al. Functional characterization ofNRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens[J]. New Phytologist, 2009, 181(3):637-650.
    [77]Wei W, Chai T, Zhang Y, et al. The Thlaspi caerulescensNRAMP homologue TcNRAMP3 is capable of divalent cationtransport[J]. Molecular Biotechnology, 2009, 41(1):15-21.
    [78]Du ZY, Chen MX, Chen QF, et al. Expression of arabidopsisacyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II)accumulation in Brassica juncea roots[J]. Plant, Cell&Environment, 2015, 38(1):101-117.