钢纤维活性粉末混凝土梁柱中节点抗震性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on seismic behavior of interior steel fiber reinforced RPC beam-column joints
  • 作者:王德弘 ; 郑文忠 ; 鞠彦忠 ; 魏春明
  • 英文作者:WANG Dehong;ZHENG Wenzhong;JU Yanzhong;WEI Chunming;Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education,Harbin Institute of Technology;School of Civil Engineering and Architecture, Northeast Electric Power University;
  • 关键词:梁柱中节点 ; 钢纤维活性粉末混凝土 ; 拟静力试验 ; 受剪承载力 ; 抗震性能
  • 英文关键词:interior beam-column joint;;steel fiber reinforced reactive powder concrete;;quasi-static test;;shear bearing capacity;;seismic behavior
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:哈尔滨工业大学结构工程灾变与控制教育部重点实验室;东北电力大学建筑工程学院;
  • 出版日期:2018-12-17 17:02
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51378095,51878128);; 教育部长江学者奖励计划(2009-37)
  • 语种:中文;
  • 页:JZJB201903017
  • 页数:11
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:165-175
摘要
为研究钢纤维活性粉末混凝土梁柱中节点的抗震性能及受剪承载力,完成了8个钢纤维活性粉末混凝土梁柱中节点试件的拟静力试验,研究了钢筋强度、节点核心区配箍率、贯通节点的腰筋及柱内非角部钢筋对活性粉末混凝土梁柱中节点的破坏过程、破坏形态、受剪承载力、滞回特性、耗能、承载力和刚度退化等抗震性能的影响。结果表明,梁柱纵筋采用HRB600高强钢筋延缓了刚度退化速率,提高了试件的耗能能力;核心区箍筋配筋率的增大能够改善破坏阶段试件的承载力退化特性和耗能能力,节点核心区横向钢筋面积率为0~0.98%时,节点的受剪承载力和延性随横向钢筋面积率的增大而增大;贯通节点的梁内腰筋和柱内非角部钢筋均能够有效提高节点受剪承载力、延缓构件承载力的退化、提高其耗能能力。采用GB 50011—2010《建筑抗震设计规范》的受剪承载力公式,对于低配箍率节点承载力计算偏于保守,当面积配箍率大于0.98%时偏于不安全;ACI 352-02中公式的计算结果与试验值更接近,约有9%~46%的安全裕度。
        In order to investigate the seismic behavior and shear bearing capacity of steel fiber reinforced reactive powder concrete(RPC) beam-column joints, quasi-static tests on eight RPC interior beam-column joints were carried out. The variables considered in test program included strength of reinforcement, stirrup ratio in joint core, and web rebars and vertical rebars across the joint core, and their influences on the failure mode, shear bearing capacity, hysteretic loops, energy dissipation, strength degeneration and rigidity degeneration behavior of the RPC joints were analyzed. The tests results indicate that the HRB600 longitudinal rebars in the beam mitigate the rigidity degeneration and improve the energy dissipating capacity of the specimen. An increase in stirrup ratio improves the strength degeneration and energy dissipating capacity of the specimen during the failure stages. As the transverse reinforcement ratio in joint core increases from 0 to 0.98%, the shear bearing capacity and ductility of the RPC joint increase. Web rebars and vertical rebars across the joint core improve the shear bearing capacity, strength degeneration and energy dissipation capacity of the specimen. Using the formula of GB 50011—2010 to calculate the shear bearing capacity leads to conservative results for RPC joints with a low stirrup ratio, but tends to be unsafe when the area stirrup ratio is greater than 0.98%. The predictions given by ACI 352-02 are closer to the test result compared to the GB 50011—2010 prediction, with a safety margin of 9%-46%.
引文
[1] 金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报(工学版), 2002, 36(4): 371-380. (JIN Weiliang, ZHAO Yuxi. State-of-the-art on durability of concrete structures[J]. Journal of Zhejiang University (Engineering Science), 2002, 36(4): 371-380. (in Chinese))
    [2] 吴瑾, 程吉昕. 海洋环境下钢筋混凝土结构耐久性评估[J]. 水力发电学报, 2005, 24(1): 69-73. (WU Jin, CHENG Jixin. Durability assessment of reinforced concrete structures in marine environment[J]. Journal of Hydroelectric Engineering, 2005, 24(1): 69-73. (in Chinese))
    [3] 戴剑锋, 刘晓江,郑克宇,等. 盐湖地区混凝土的腐蚀和防治[J]. 甘肃工业大学学报, 2002, 28(2): 100-102. (DAI Jianfeng, LIU Xiaojiang, ZHENG Keyu, et al. The corrosion of concrete in the salt lake area and its prevention[J]. Journal of Gansu University of Technology, 2002, 28(2): 100-102. (in Chinese))
    [4] ROU X N. Experimental study of durability of reactive powder concretes[J]. Journal of Materials in Civil Engineering, 1996, 8(1): 1- 6.
    [5] GRAYBEAL B, TANESI J. Durability of an ultrahigh-performance concrete[J]. Journal of Materials in Civil Engineering, 2007, 19(10): 848-854.
    [6] 刘斯凤, 孙伟, 林玮, 等. 掺天然超细混合材高性能混凝土的制备及其耐久性研究[J]. 硅酸盐学报, 2003, 31(11): 1080-1085. (LIU Sifeng, SUN Wei, LIN Wei, et al. Preparation and durability of a high performance concrete with natural ultra-fine particies[J]. Journal of the Chinese Ceramic Society, 2003, 31(11): 1080-1085. (in Chinese))
    [7] 余自若, 阎贵平, 张明波. 活性粉末混凝土的弯曲强度和变形特性[J]. 北京交通大学学报, 2006, 30(1): 40- 43. (YU Ziruo, YAN Guiping, ZHANG Mingbo. Bending strength and deformation character of reactive powder concrete[J]. Journal of Beijing Jiaotong University, 2006, 30(1): 40- 43. (in Chinese))
    [8] YANG I H, JOHN C, LEE J W, KIM B S. Torsional behavior of ultra-high performance concrete squared beams[J]. Engineering Structures, 2013, 56: 372-383.
    [9] FUJIKAKE K, SENGA T, UEDA N, OHNO T, KATAGIRI M. Study on impact response of reactive powder concrete beam and its analytical model[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 99-108.
    [10] HUNG C C, CHUEH C Y. Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar[J]. Engineering Structures, 2016,122:108-120.
    [11] SHI C, LONG M, CAO C, et al. Mechanical property test and analytical method for reactive powder concrete columns under eccentric compression[J]. Journal of Civil Engineering, KSCE, 2016, 21(4): 1307-1318.
    [12] 鞠彦忠, 王德弘, 白俊峰. 活性粉末混凝土柱抗震性能试验[J]. 哈尔滨工业大学学报, 2013, 45(8): 111-116. (JU Yanzhong, WANG Dehong, BAI Junfeng. Seismic performance of reactive powder concrete columns[J]. Journal of Harbin Institute of Technology, 2013, 45(8): 111-116. (in Chinese))
    [13] 童小龙, 方志, 罗肖. 活性粉末混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(1): 21-30. (TONG Xiaolong, FANG Zhi, LUO Xiao. Experimental study on seismic behavior of reactive powder concrete shear walls[J]. Journal of Building Structures, 2016, 37(1): 21-30. (in Chinese))
    [14] 郑文忠, 李莉, 卢姗姗. 钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J]. 建筑结构学报, 2011, 32(6): 125-134. (ZHENG Wenzhong, LI Li, LU Shanshan. Experimental research on mechanical performance of normal section of reinforced reactive powder concrete beam[J]. Journal of Building Structures, 2011, 32(6): 125-134. (in Chinese))
    [15] 金凌志, 周家亮, 李月霞, 等. 高强钢筋活性粉末混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2015, 36(增刊2): 277-285. (JIN Lingzhi, ZHOU Jialiang, LI Yuexia, et al. Experimental study on shear bearing capacity of RPC beams with high strength reinforcement[J]. Journal of Building Structures, 2015, 36(Suppl.2): 277-285. (in Chinese))
    [16] 活性粉末混凝土: GB/T 31387—2015[S]. 北京: 中国标准出版社, 2015. (Reactive powder concrete: GB/T 31387—2015[S]. Beijing: Standards Press of China, 2015. (in Chinese))
    [17] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京: 东南大学出版社, 1989:281. (TANG Jiuru. Seismic resistance of joints in reinforced concrete frames[M]. Nanjing: Southeast University Press, 1989:281. (in Chinese))
    [18] 建筑抗震试验方法规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015. (Specificating of testing methods for earthquake resistant building: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015. (in Chinese))
    [19] 唐九如, 徐晓霖. 钢筋轻骨料砼框架节点抗剪强度与梁筋锚固[J]. 建筑结构, 1988,18(1): 2-8.
    [20] 赵成文, 张殿惠, 王天锡, 等. 反复荷载下高强混凝土框架内节点抗震性能试验研究[J]. 沈阳建筑大学学报, 1993, 9(3): 260-268. (ZHAO Chengwen, ZHANG Dianhui, WANG Tianxi, et al. Experimental study on the aseismatic property of the beam-column joints in high-strength concrete frame under alternating load[J]. Journal of Shenyang Architectural and Civil Engineering Institute, 1993, 9(3): 260-268.(in Chinese))
    [21] 唐九如, 冯纪寅, 庞同和. 钢筋混凝土框架梁柱节点核心区抗剪强度试验研究[J]. 南京工学院学报, 1985, 15(4): 61-75. (TANG Jiuru, FENG Jiyin, PANG Tonghe. Experimental study of shear strength of R/C beam-column joint core[J]. Journal of Nanjing Institute of Technology, 1985, 15(4): 61-75. (in Chinese))
    [22] ALAEE P, LI B. High-strength concrete exterior beam-column joints with high-yield strength steel reinforcements[J]. Engineering Structures, 2017, 145: 305-321.
    [23] 吴涛, 刘喜, 魏慧. 高强轻骨料混凝土框架中节点抗震性能试验研究[J]. 土木工程学报, 2018, 51(6): 32- 42. (WU Tao, LIU Xi, WEI Hui. Experimental study on seismic behavior of frame interior joints with high-strength lightweight aggregate reinforced concrete[J]. China Civil Engineering Journal, 2018, 51(6): 32- 42. (in Chinese))
    [24] 中国建筑科学研究院. 混凝土结构研究报告选集[R]. 北京: 中国建筑工业出版社, 1994.
    [25] 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010. (Code for seismic design of buildings: GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese))
    [26] KIM J, LAFAVE J M. Key influence parameters for the joint shear behaviour of reinforced concrete (RC) beam-column connections[J]. Steel Construction, 2007, 29(10): 2523-2539.
    [27] PARK R, YEOH Sik K. Tests on structural concrete beam-column joints with intermediate column bars[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1979, 12(3): 189-203.
    [28] ACI-ASCE Committee 352. Recommendations for design of beam-column connections in monolithic reinforced concrete structures: ACI 352R- 02[R]. Farmington Hills: American Concrete Institute, 2010.
    [29] 史庆轩, 王南, 昝帅, 等. 高强箍筋高强混凝土梁柱节点抗震性能试验研究[J]. 工程力学, 2015, 32(5): 102-110. (SHI Qingxuan, WANG Nan, ZAN Shuai, et al. Experimental study on seismic behavior of high-strength concrete frame joints with high-strength stirrups[J]. Engineering Mechanics, 2015, 32(5): 102-110. (in Chinese))
    [30] 葛宏亮. 配置HRB500钢筋框架中间层中节点抗震性能试验研究[D]. 重庆: 重庆大学, 2007: 23. (GE Hongliang. Experimental research of the interior joint with HRB500 steel in earthquake-resistant frames[D]. Chongqing: Chongqing University, 2007: 23. (in Chinese))