核磁共振代谢组学研究狼毒大戟对大鼠粪便代谢物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nuclear Magnetic Resonance-based Metabonomic for Study of Feces from Rats Treated with Root of Euphorbia Fischeriana Steud Extract
  • 作者:王霞 ; 徐灿 ; 吴秀园 ; 孙雯 ; 王英锋 ; 李中峰
  • 英文作者:WANG Xia;XU Can;WU Xiu-Yuan;SUN Wen-Ting;WANG Ying-Feng;LI Zhong-Feng;Department of Chemistry, Capital Normal University;
  • 关键词:狼毒大戟 ; 代谢组学 ; 粪便 ; 核磁共振
  • 英文关键词:Euphorbia fischeriana Steud;;Metabonomics;;Feces;;~1H-Nuclear magnetic resonance
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:首都师范大学化学系;
  • 出版日期:2019-04-04 14:50
  • 出版单位:分析化学
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金项目(No.81573832)资助~~
  • 语种:中文;
  • 页:FXHX201905004
  • 页数:9
  • CN:05
  • ISSN:22-1125/O6
  • 分类号:36-44
摘要
应用核磁共振(NMR)代谢组学方法研究狼毒大戟根部毒性导致大鼠粪便代谢物的变化。将36只SPF级雄性SD大鼠随机分为3组,给药组大鼠腹腔注射高低两个剂量的狼毒大戟根部醇提物,对照组给予同体积含有3%吐温80的生理盐水。每天给药一次,连续给药15天后停药恢复15天,收集各组大鼠的粪便样品。利用NMR技术检测大鼠粪便中代谢物,对得到的~1H-NMR数据进行多元统计分析,获取大鼠粪便中内源性代谢产物的变化规律。通过Student t检验进一步确定具有统计学意义的生物标志物。大鼠粪便中鉴定出35种代谢物,狼毒大戟导致12种代谢物变化显著,其中谷氨酸、天冬氨酸、亮氨酸、丙氨酸、赖氨酸、蛋氨酸、苯丙氨酸、二甲胺、三甲胺、尿嘧啶含量下降,葡萄糖、丁酸含量升高。这些与肠道菌群有关的代谢物变化表明,狼毒大戟毒性导致大鼠的肠道菌群紊乱,进而造成了大鼠体内氨基酸、短链脂肪酸和葡萄糖代谢异常,为进一步揭示狼毒大戟的毒性提供了实验依据。
        Nuclear magnetic resonance(NMR)-based metabonomics was applied to analyze the alterations of fecal metabolites induced by Euphorbia fischeriana Steud(E. fischeriana). A total of 36 SPF male Sprague-Dawley rats were randomly divided into three groups. The administered groups were intraperitoneally injected with different dosages of the extract, while the control group was given the same volume of normal saline containing 3% Tween 80. Rats were administered once a day for 15 consecutive days and withdrawal period lasted for 15 days, and the fecal samples of rats in each group were collected. NMR technology was applied to analyze the fecal samples of rats. The obtained ~1H-NMR data were subjected to multivariate statistical analysis to select the altered endogenous metabolites in rat feces, and student test followed by multivariate statistical analysis to obtain the statistically significant biomarkers. Consequently, the metabolic signature of feces exhibited increased levels of glucose and butyrate, together with decreased levels of leucine, alanine, lysine, glutamate, methionine, aspartate, trimethylamine, dimethylamine, phenylalanine, and uracil in E. fischeriana extract administered groups. It could be seen that the significant altered metabolites associated with the metabolism of intestinal flora were futher induced disturbance in amino acid metabolism, short-chain fatty acids and glucose metabolism. The results provided experimental evidence to elucidate toxicity of E. fischeriana.
引文
1 XIA Qing,XU Ke-Xin,ZHANG Wen-Ting,WANG Yu-Tong,HUANG Wan-Zhen,LUO Jun,FAN Jiao-Jiao,WANG Bao-Li,MA Zhi-Qiang,LIN Rui-Chao.Global Tradit.Chin.Med.,2017,10(8):927-932夏青,徐柯心,张文,王雨彤,黄婉贞,罗隽,樊娇娇,王宝丽,马志强,林瑞超.环球中医药,2017,10(8):927-932
    2 YANG Qin,YANG De-Quan,GONG Wei.J.Mod.Med.Health,2018,34(17):2625-2628杨勤,杨德全,龚伟.现代医药卫生,2018,34(17):2625-2628
    3 HU Shuang,LIU Feng,CHEN Mei-Yan.J.Anhui Agric.Sci.,2015,43(9):72,85胡爽,刘峰,陈美言.安徽农业科学,2015,43(9):72,85
    4 JIANG Chun-Ying,WANG Ying-Hong.Acta Pharm.Sin.,2014,49(7):949-955江春迎,王映红.药学学报,2014,49(7):949-955
    5 Luo H,Gu C,Liu C,Wang Y,Wang H,Li Y.Toxicol.Res.,2018,7(8):1153-1163
    6 Yan M,Xu G.Anal.Chim.Acta,2018,1037:41-54
    7 Cao J,Mi Y,Shi C,Bian Y,Huang C,Ye Z,Liu L,Miao L.Biochem.Biophys.Res.Commun.,2018,497(2):485-491
    8 GUO Xin-Tian,YU Zhong-Yi.Acta Univ.Tradit.Med.Sin.Pharmacol.Shanghai,2017,31(4):92-98郭心甜,俞仲毅.上海中医药大学学报,2017,31(4):92-98
    9 LIU Shao-Bo,XU Teng,GAO Yao,GAO Xiao-Xia,ZHOU Yu-Zhi,TIAN Jun-Sheng,QIN Xue-Mei.Chin.Tradit.Herbal Drugs,2019,50(1):97-103刘少博,许腾,高耀,高晓霞,周玉枝,田俊生,秦雪梅.中草药,2019,50(1):97-103
    10 LIU Hong-Jie,DONG Han-Qiu,ZHAN Sha,CHEN Liang,XIAO Ya.Chin.J.Chin.Mater.Med.,2019,44(4):827-832刘红杰,董含秋,詹莎,陈亮,肖雅.中国中药杂志,2019,44(4):827-832
    11 Amiot A,Dona A C,Wijeyesekera A,Tournigand C,Baumgaertner I,Lebaleur Y,Sobhani I,Holmes E.J.Proteome Res.,2015,14(9):3871-3881
    12 HU Yong-Sheng,XU Peng-Tao,YE Sheng-Jie,SHI Wen-Yu,GAO Hong-Chang,ZHUO Yang,ZHAO Liang-Cai.Chinese J.Anal.Chem.,2018,46(2):170-177胡永胜,徐鹏涛,叶胜捷,施雯宇,高红昌,卓阳,赵良才.分析化学,2018,46(2):170-177
    13 Engevik M A,Engevik K A,Yacyshyn M B,Wang J,Hassett D J,Darien B,Yacyshyn B R,Worrell R T.Am.J.Physiol.Gastrointest.Liver Physiol.,2015,308(6):G497-509
    14 Tian F,Gu L,Si A ,Yao Q,Zhang X,Zhao J,Hu D,J.Chromatogr.B,2015,1007:140-148
    15 Deda O,Gika H,Panagoulis T,Taitzoglou I,Raikos N,Theodoridis G.Bioanalysis,2017,9(1):21-36
    16 Yang Y,Wang L,Wang S,Huang R,Zheng L,Liang S,Zhang L,Xu J.Mol.bioSyst.,2014,10(7):1803-1811
    17 Shao T J,He Z X,Xie Z J,Li H C,Wang M J,Wen C P.Metabolomics,2016,12(4):70
    18 Wang L,Zheng L,Luo R,Zhao X,Han Z,Wang Y,Yang Y.RSC Adv.,2015,5(1):281-290
    19 Lamichhane S,Yde C C,Schmedes M S,Jensen H M,Meier S,Bertram H C.Anal.Chem.,2015,87(12):5930-5937
    20 MENG Xin,WANG Shou-Chuan,XIE Tong,XU Jian-Ya,SHEN Cun-Si,SHAN Jin-Jun.J.Nanjing Univ.Tradit.Chin.Med.,2017,33(2):198-206孟欣,汪受传,谢彤,徐建亚,沈存思,单进军.南京中医药大学学报,2017,33(2):198-206
    21 WANG Xu-Bin,CAO Rui-Li,LIU Qiao,ZHANG Qi,XU Mei-Feng,SUN Bo,YAN Xian-Zhong.Chin.Med.Her.,2013,10(14):18-21,169王旭彬,曹瑞丽,刘巧,张琪,许美凤,孙博,颜贤忠.中国医药导报,2013,10(14):18-21,169
    22 GONG Meng-Juan,LI Chun-Yuan,WU Sheng-Qian,ZHOU Xiang-Yu,WANG Shu-Mei,LIANG Sheng-Wang,ZOU Shi-Jie.Chin.Tradit.Herbal Drugs,2017,48(14):2889-2894龚梦鹃,李春苑,巫圣乾,周祥羽,王淑美,梁生旺,邹忠杰.中草药,2017,48(14):2889-2894
    23 LIU Qian-Ming,LI-Hui,YANG Guang-Yong,HE Guang-Zhi,TIAN Wei-Yi,CAI Kun,WANG Ping,HUANG Gao,WANG Wen-Jia,LIANG Jian-Dong.Heilongjiang Anim.Sci.Veter.Med.,2018,(12):178-181刘茜明,李慧,杨光勇,何光志,田维毅,蔡琨,王平,黄高,王文佳,梁建东.黑龙江畜牧兽医,2018,(12):178-181
    24 LI Tian-Qi,SUN Shan-Shan,ZHANG Jin-Yue,WANG Ying-Hong.Acta Pharm.Sin.,2018,53(5):791-797李天琪,孙珊珊,张金月,王映红.药学学报,2018,53(5):791-797
    25 Hong Y S,Ahn Y T,Park J C,Lee J H,Lee H,Huh C S,Kim D H,Ryu D H,Hwang G S.Arch.Pharm.Res.,2010,33(7):1091-1101