溶解氧变化对阴极极化下10Ni5CrMo钢氢脆敏感性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of dissolved oxygen on hydrogen embrittlement susceptibility of 10Ni5CrMo steel under cathodic polarization
  • 作者:尹鹏飞 ; 李向阳 ; 曹荣凯 ; 陆文萍 ; 杨朝晖 ; 张波
  • 英文作者:YIN Peng-fei;LI Xiang-yang;CAO Rong-kai;LU Wen-ping;YANG Zhao-hui;ZHANG Bo;Central Iron and Steel Research Institute;Qingdao NCS Testing and Protection Technology Co., Ltd.;College of Electromechanical Engineering, Qingdao University of Science and Technology;
  • 关键词:10Ni5CrMo钢 ; 氢脆敏感性 ; 极化电位 ; 溶解氧
  • 英文关键词:10Ni5CrMo steel;;hydrogen embrittlement susceptibility;;polarization potential;;dissolved oxygen
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:钢铁研究总院;青岛钢研纳克检测防护技术有限公司;青岛科技大学机电工程学院;
  • 出版日期:2019-04-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 基金:国家科技基础条件平台专题服务资助项目(2005DKA10400-16Z1)
  • 语种:中文;
  • 页:IRON201904009
  • 页数:8
  • CN:04
  • ISSN:11-2133/TF
  • 分类号:75-82
摘要
为研究溶解氧质量浓度对10Ni5CrMo钢在阴极极化条件下氢脆敏感性影响规律,对10Ni5CrMo钢进行了阴极极化下的电化学交流阻抗谱测试﹑并采用慢应变速率拉伸实验和断口分析方法研究了海水中溶解氧质量浓度变化和不同阴极极化下10Ni5CrMo钢的氢脆敏感性。结果表明:溶解氧质量浓度变化对10Ni5CrMo钢强度几乎没有影响;同一溶解氧质量浓度下,随极化电位负移,断裂时间、伸长率、断面收缩率明显降低,氢脆系数增加,氢脆敏感性显著提高,极化电位达到-1 000 mV时,氢脆系数已超过安全区允许的最高值25%,进入危险区;同一极化电位下,随着海水中溶解氧质量浓度减少,材料塑性变差,断裂时间、伸长率和断面收缩率不断降低,氢脆系数增加,氢脆敏感性提高。
        To study the effects of dissolved oxygen concentration on hydrogen embrittlement sensitivity of 10 Ni5 CrMo steel under cathodic polarization, the electrochemical impedance spectra of 10 Ni5 CrMo steel were measured under cathodic polarization, and hydrogen embrittlement susceptibility of 10 Ni5 CrMo steel under different dissolved oxygen concentrations and cathodic polarization were studied by slow strain rate tensile test combined with fracture morphology. The results show that the dissolved oxygen concentration has little effect on the strength of 10 Ni5 CrMo steel. At the same dissolved oxygen concentration, time to fracture, elongation and reduction in area significantly decreased with the negative shift of polarization potential, while hydrogen embrittlement coefficient increases, and hydrogen embrittlement sensitivity is enhanced. The hydrogen embrittlement coefficient reaches the threshold of 25% when the polarization potential is about-1 000 mV(vs. SCE), being in a dangerous range. At the same polarization potential, with the decrease of dissolved oxygen concentration in seawater, the plasticity of the material becomes worse, and the time to fracture, elongation and reduction in area continue to decrease, whereas the hydrogen embrittlement coefficient and the hydrogen embrittlement susceptibility increase.
引文
[1] 韩恩厚,陈建敏,宿彦京,等.海洋工程结构与船舶的腐蚀防护—现状与趋势[J].中国材料进展,2014,33(2):65.(Han E H,Chen J M,Su Y J,et al.Corrosion protection techniques of marine engineering structure and ship equipment current status and future trend[J].Materials China,2014,33(2):65.)
    [2] 许立坤,马力.海洋工程阴极保护技术发展评述[J].中国材料进展,2014,33(2):106.(Xu L K,Ma L.Review on cathodic protection for marine structures[J].Materials China,2014,33(2):106.)
    [3] Zucchi F,Grassi V,Monticelli C,et al.Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions[J].Corrosion Science,2006,48(2):522.
    [4] Batt C,Robinson M J.Cathodic protection requirements for high strength steel in sea water assessed by potentiostatic weight loss measurements[J].British Corrosion Journal,2013,37(1):31.
    [5] Zhang T M,Zhao W M,Guo W,et al.Hydrogen permeation behavior through HSLA steels and its implications on hydrogen embrittlement susceptibility[J].Applied Mechanics and Materials,2013,302:310.
    [6] Batt.Optimising Cathodic Protection Requirements for High Strength Steels in the Marine Environment[D]//Bedfordshire:Cranfield University,2000.
    [7] Coudreuse L,Renaudin C,Bocquet P,et al.Evaluation of hydrogen assisted cracking resistance of high strength Jack-up steels[J].Marine Structures,1996,10(2/3/4):85.
    [8] Shin-Ichi K,Maruyama R,Misawa T.Effect of applied cathodic potential on susceptibility to hydrogen embrittlement in high strength low alloy steel[J].ISIJ International,2003,43(4):475.
    [9] Kim S J,Jang S K,Kim J I.Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength Steel[J].Metals and Materials International,2005,11(1):63.
    [10] 杨兆艳,闫永贵,马力,等.阴极极化对907钢氢脆敏感性的影响[J].腐蚀与防护,2009,30(10):701.(Yang Z Y,Yan Y G,Ma L,et al.Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 907 steel[J].Corrosion and Protection,2009,30(10):701.)
    [11] 常娥,闫永贵,李庆芬,等.阴极极化对921A钢海水中氢脆敏感性的影响[J].中国腐蚀与防护学报,2010,30(1):83.(Chang E,Yan Y G,Li Q F,et al.Effects of cathodic polarization on the hydrogen embrittlement sensitivity of 921A steel in sea water[J].Journal of Chinese Society for Corrosion and Protection,2010,30(1):83.)
    [12] 张林.模拟深海环境X70钢阴极保护过程及其氢脆敏感性研究[D]//青岛:中国海洋大学,2011.(Zhang L.Study on the Cathodic Protection Process and Susceptibility of Hydrogen Embrittlement of X70 Steel in Simulated Deep Ocean Environment[D]//Qingdao:Ocean University of China,2011.)
    [13] 刘玉,李焰,李强.阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J].金属学报,2013,49(9):1089.(Liu Y,Li Y,Li Q.Effects of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea water[J].Acta Metallurgica Sinica,2013,49(9):1089.)
    [14] 潘大伟,高心心,马力,等.模拟深海环境中高强钢的阴极保护准则[J].腐蚀与防护,2016,37(3):225.(Pan D W,Gao X X,Ma L,et al.Cathodic protection criteria of high strength steel in simulated deep-sea environment[J].Corrosion and Protection,2016,37(3):225.)
    [15] 侯健,郭为民,邓春龙.深海环境因素对碳钢腐蚀行为的影响[J].装备环境工程,2008,5(6):82.(Hou J,Guo W M,Deng C L.Influences of deep sea environmental factors on corrosion behavior of carbon steel[J].Equipment Environmental Engineering,2008,5(6):82.)
    [16] 谢飞,王丹,吴明,等.溶解氧对X80管线钢腐蚀行为的影响及其机制[J].钢铁研究学报,2015,27(3):60.(Xie F,Wang D,Wu M,et al.Effect of dissolved oxygen on corrosion behavior of X80 pipeline steel and its mechanism[J].Journal of Iron and Steel Research,2015,27(3):60.)
    [17] 刘杏,周建江,李光福,等.溶解氧对X70管线钢在高pH 值溶液中的电化学行为和SCC敏感性的影响[J].腐蚀与防护,2008,29(6):305.(Liu X,Zhou J J,Li G F,et al.Influence of dissolved oxygen on electrochemical behaviour and SCC susceptibility of pipeline steel X70 in high pH solution[J].Corrosion and Protection,2008,29(6):305.)
    [18] 胥聪敏,国蓉,胡海军,等.X80管线钢在海滨盐碱土壤模拟溶液中的耐腐蚀性能研究[J].钢铁研究学报,2010,22(3):42.(Xu C M,G R,Hu H J,et al.Corrosion resistance of X80 pipeline steel in simulated solution of seaside saline-alkali soil[J].Journal of Iron and Steel Research,2010,22(3):42.)
    [19] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002(Cao C N,Zhang J Q.Introduction to Electrochemical Impedance Spectrum[M].Beijing:Science Press,2002.)
    [20] 徐海波,王廷勇,王远志,等.16Mn 钢在土壤中的阴极保护参数实验室评价技术研究[J].腐蚀科学与防护技术,2006,18(6):407.(Xu H B,Wang T Y,Wang Y Z,et al.A laboratory evaluation technology for determination of cathodic protection parameters of 16Mn steel in soil[J].Corrosion Science and Protection Technology,2006,18(6):407.)
    [21] 张体明,赵卫民,郭望,等.阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J].中国腐蚀与防护学报,2014,34(4):315.(Zhang T M,Zhao W M,Guo W,et al.Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial seawater[J].Journal of Chinese Society for Corrosion and Protection,2014,34(4):315.)