一种高强度速黏纳米杂化水凝胶“创可贴”
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A High Strength Instant Adhesive Nano-hybrid Hydrogel as First-aid Bandage
  • 作者:崔春燕 ; 陈薪羽 ; 刘博 ; 武腾玲 ; 范川川 ; 刘文广
  • 英文作者:Chun-yan Cui;Xin-yu Chen;Bo Liu;Teng-ling Wu;Chuan-chuan Fan;Wen-guang Liu;School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University;
  • 关键词:有机-无机杂化 ; 水凝胶 ; 高强 ; 黏附 ; “创可贴”
  • 英文关键词:Organic-inorganic hybrid;;Hydrogel;;High strength;;Adhesion;;First-aid bandage
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:天津大学材料科学与工程学院;
  • 出版日期:2019-03-05 16:40
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金(基金号51325305,51733006)资助项目
  • 语种:中文;
  • 页:GFXB201906008
  • 页数:10
  • CN:06
  • ISSN:11-1857/O6
  • 分类号:81-90
摘要
报道了一种制备具有高强度、高黏附性和良好生物相容性的黏合水凝胶的极其简便的方法.将N-丙烯酰-2-氨基乙酸(ACG)水溶液与纳米生物活性玻璃(BG)混合,紫外光引发自由基聚合即可快速制备PACG-BG纳米复合水凝胶.在该水凝胶体系中PACG分子链之间形成的氢键、PACG末端的羧基与BG中的金属离子形成的离子络合以及PACG分子链与BG纳米粒子之间发生的物理吸附作用共同构成了网络的多重物理交联,由此显著提高了凝胶的强度.通过调节凝胶体系中ACG和BG的含量赋予了水凝胶可调节的黏附性、机械性能以及室温自修复特性.利用搭接剪切拉伸的方式对水凝胶的黏附性能进行测试,结果显示当水凝胶中ACG的含量为25 wt%,BG占ACG含量为6 wt%时,水凝胶的表面黏附能和内聚能可达平衡,其对猪皮、铁片和陶瓷的瞬时最大黏附强度分别为120、142和125 kPa.同时,水凝胶最高拉伸强度可达0.9 MPa,撕裂能可达1500 J/m2.动物体内埋植结果显示水凝胶具有良好的生物相容性.鉴于水凝胶对生物软组织有优异的黏附性能,对其进行了体外修补胃穿孔的模拟实验,结果表明,水凝胶可以牢固地黏附在胃的穿孔处,防止模拟胃液的外泄.
        In this work, a very simple method for preparing a mechanically strong, highly adhesive, and biocompatible hydrogel was reported. The aqueous solution of N-acryloyl-2-aminoacetic acid(ACG) and nanobioactive glass(BG) was mixed, followed by UV light irradiation to initiate polymerization for preparing the PACG-BG nano-hybrid hydrogels rapidly. The intermolecular hydrogen bonds from PACG chains, coordination between PACG-end carboxyls and metal ions of BG, as well as PACG-BG physical interaction collectively formed multiple physical crosslinks, were contributed to the increased mechanical strengths. The studies of PACG-BG hydrogels demonstrated that tunable mechanical properties, adhesion abilities, and room temperature self-healing ability could be adjusted by changing the contents of ACG and BG. The adhesion strengths of the hydrogels were tested by tension loading in lap-shear mode. The results indicated that at 25 wt% ACG and 6 wt%BG(relative to ACG), the hydrogels could achieve a balance between surface adhesion and cohesion energies; in this case, the maximum instant adhesion strengths toward pig's skin, ion sheet, and ceramic were measured to be120, 142, and 125 kPa, respectively, and the adhesion strengths of hydrogels toward pig skin, ion sheet, and ceramics was presumably originated from the enrichment of PACG chains to the substrates facilitated by the BG nanoparticles. This allowed more carboxyl groups on the hydrogel surface to form hydrogen bonds, ionic coordination, and dipole interactions with the adherends, consequently leading to the enhanced adhesion to these materials. Intriguingly, the highest tensile strength of the hydrogel was as high as 0.9 MPa, fracture energy could reach 1500 J m-2, and self-healing efficiency could reach 100% after 12 h at room temperature without manual intervention. The outcomes of in vivo implantation showed that the hydrogel possessed better biocompatibility. In light of its robust adhesion to biological soft tissues, the hydrogel was used for in vitro adhering and mending the animal's gastric perforation. The results revealed that the hydrogel could adhere firmly to the perforated stomach,thus preventing leakage of gastric fluid. This novel organic-inorganic hybrid hydrogel holds promising potential as a biomedical first-aid bandage.
引文
1 Anderson C A,Jones A R,Briggs E M,Novitsky E J,Kuykendall D W,Sottos N R,Zimmerman S C.J Am Chem Soc,2013,135:7288-7295
    2 Bu Y Z,Zhang L C,Liu J H,Zhang L H,Li T T,Shen H,Wang X,Yang F,Tang P F,Wu D C.ACS Appl MaterInterfaces,2016,8:12674-12683
    3 Sun L,Huang Y,Bian Z,Petrosino J,Fan Z,Wang Y,Park K H,Yue T,Schmidt M,Galster S.ACS Appl MaterInterfaces,2016,8:2423-2434
    4 Jeon E Y,Wang B H,Yang Y J,Kim B J,Choi B H,Jung G Y,Cha H J.Biomaterials,2015,67:11-19
    5 Zhao Q,Lee D W,Ahn B K,Seo S,Kaufman Y,Israelachvili J N,Waite J H.Nat Mater,2016,15:407-412
    6 Sedo J,Poseu J S,Busque F,Molina D R.Adv Mater,2013,25:653-658
    7 Walte J H.Integr Comp Biol,2002,42:1172-1180
    8 Shin M,Park S G,Oh B C,Kim K,Jo S,Lee M S,Song S,Hong S H,Shin E C,Kim K S,Kang S W,Lee H.Nat Mater,2017,3:147-154
    9 Wang R,Li J Z,Chen W,Xu T T,Yun S F,Xu Z,Xu Z Q,Sato T,Chi B,Xu H.Adv Funct Mater,2017,27:1604894
    10 Shin J,Lee J S,Lee C,Park H J,Yang K,Jin Y,Ryu J H,Hong K S,Moon S H,Chung H M,Yang H S,Um S H,Oh J W,Kim D I,Lee H,Cho S W.Adv Funct Mater,2015,25:3814-3824
    11 Zhang H,Bre L,Zhao T Y,Newland B,Costa M D,Wang W X.J Mater Chem B,2014,2:4067-4071
    12 Bouten J M,Zonjee M,Bender J,Yauw T K,Goor H V,Hoogenboom R.Prog Polym Sci,2014,39:1375-1405
    13 Burkett J R,Hight L M,Kenny P,Wilker J J.J Am Chem Soc,2010,132:12531-12533
    14 Walker G J.Mar Biol,1972,52:429-435
    15 Szilagyi I,Trefalt G,Tiraferri A,Maroni P,Borkovec M.Soft Matter,2014,10:2479-2502
    16 Cui C Y,Wu T L,Gao F,Fan C C,Xu Z Y,Wang H B,Liu B,Liu W G.Adv Funct Mater,2018,28:1804925
    17 Li A,Jia Y F,Sun S T,Yu Y S,Minsky B,Colfen H,Guo X H.ACS Appl Mater Interfaces,2018,28:10471-10479
    18 Meredith H J,Jenkins C L,Wilker J J.Adv Funct Mater,2014,24:3259-3267
    19 Nicola R,Kamada J,Wassen A V,Matyjaszewski K.Macromolecules,2010,43:4355-4361
    20 Montarnal D,Capelot M,Tournilhac F,Leibler L.Science,2011,334:965-967
    21 Rose S,Prevoteau A,Elziere P,Hourdet D,Marcellan A,Leibler L.Nature,2014,505:382-385
    22 Gao F,Zhang Y Y,Li Y M,Xu B,Cao Z Q,Liu W G.ACS Appl Mater Interfaces,2016,8:8956-8966
    23 Yang Weizhong(杨为中),Zhou Dali(周大利),Yin Guangfu(尹光福),Zheng Changqiong(郑昌琼).J Biomed Eng(生物医学工程学杂志),2003,20:541-545
    24 Han Y J,Bai T,Liu W G.Sci Rep,2014,4:5815-5821
    25 Zhang Y Y,Li Y M,Liu W G.Adv Funct Mater,2015,25:471-480