输电导线冰棱覆冰表面换热系数分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the Surface Convective Heat Transfer Coefficient of Icicle on Transmission Lines
  • 作者:黄新波 ; 崔运涛 ; 朱永灿 ; 高华 ; 郑心心 ; 李弘博
  • 英文作者:HUANG Xinbo;CUI Yuntao;ZHU Yongcan;GAO Hua;ZHENG Xinxin;LI Hongbo;School of Electronics and Information, Xi'an Polytechnic University;Jincheng Power Supply Company, State Grid Shanxi Electric Power Company;
  • 关键词:输电导线 ; 冰棱 ; 对流换热系数 ; 覆冰 ; 数值模拟
  • 英文关键词:power transmission line;;icicle;;convective heat transfer coefficient;;icing;;mathematical simulation
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:西安工程大学电子信息学院;国网山西省电力有限公司晋城供电公司;
  • 出版日期:2019-06-20 17:25
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.319
  • 基金:国家自然科学基金(51177115);; 陕西省重点项目(2018ZDXM-GY-040);; 陕西省自然科学基础研究计划(2018JQ5049);; 陕西省教育厅专项科研计划项目(18JK0345)~~
  • 语种:中文;
  • 页:GDYJ201906038
  • 页数:7
  • CN:06
  • ISSN:42-1239/TM
  • 分类号:301-307
摘要
为了研究覆冰输电导线冰棱生长的机理,针对覆冰输电导线冰棱生长的关键因素—表面对流换热系数展开研究,建立了覆冰输电导线多冰棱模型,仿真分析了导线覆冰程度、冰棱间距及冰棱长度对冰棱表面对流换热系数的影响,并设计了专门的装置进行实验验证。结果表明:在所研究的参数范围内,导线覆冰厚度越大,其冰棱表面对流换热系数就越小;冰棱间距越大,其冰棱表面对流换热系数也越小;而冰棱长度的变化对冰棱对流换热系数影响不大。冰棱表面对流换热系数的数值模拟结果与实验结果差值仅为6%~10%,而传统经验公式计算结果与实验结果差值为9%~29%。与传统经验公式计算相比,采用数值模拟的计算结果更精确,有利于深入研究冰棱生长机理。
        In order to study the growth mechanism of icicle on ice-covered transmission lines, we studied a key parameter for icing accretion, namely, the surface convective heat transfer coefficient of icicle, and established a multi-icicle model for the ice-covered transmission line. The effects of the ice coverage and the distance between the icicle and the length of the icicle on the heat transfer coefficient were analyzed by means of numerical simulation, and a special device was designed to verify the experiments. The results show that the surface heat transfer coefficient of the icicle decreases with the increase of ice thickness or the distance between the icicle within the studied parameters range, but hardly changes with the change of the icicle length. The results of numerical simulation of convective heat transfer coefficient on icicle are basically consistent with the experimental results, and the difference is 6%~10%, while the difference between the results of the traditional empirical formula and the experimental results is 9%~29%. Compared with the traditional empirical formula, the numerical simulation method has higher accuracy, which is more conducive to the study of icicles growth model.
引文
[1]黄新波.输电线路在线监测与故障诊断[M].2版.北京:中国电力出版社,2014.HUANG Xinbo.Online monitoring and fault diagnosis of transmission line[M].2nd ed.Beijing,China:China Electric Power Press,2014.
    [2]FARZANEH M.Atmosphere icing of power networks[M].Berlin,Germany:Springer,2008.
    [3]黄新波,李弘博,朱永灿,等.基于时间序列分析与卡尔曼滤波的输电线路覆冰短期预测[J].高电压技术,2017,43(6):1943-1949.HUANG Xinbo,LI Hongbo,ZHU Yongcan,et al.Short-term forecast for transmission line icing by time series analysis and Kalman filtering[J].High Voltage Engineering,2017,43(6):1943-1949.
    [4]ZHU Y C,HUANG X B,TIAN Y,et al.Experimental Study on the icing dielectric constant for the capacitive icing sensor[J].Sensors,2018,18(10):3325.
    [5]HU Y C,HUANG X B,JIA J Y,et al.Experimental study on the thermal conductivity for transmission line icing[J].Cold Regions Science&Technology,2016,129:96-103.
    [6]HUANG X B,ZHANG F,LI H S,et al.An online technology for measuring icing shape on conductor based on vision and force sensors[J].IEEE Transactions on Instrumentation&Measurement,2017,12(66):3180-3189.
    [7]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-22.LI Chengrong,LüYuzhen,CUI Xiang,et al.Research issues for safe operation of power grid in china under ice-snow disasters[J].Power System Technology,2008,32(4):14-22.
    [8]JIANG X,FAN S,ZHANG Z,et al.Simulation and experimental investigation of DC ice-melting process on an iced conductor[J].IEEETransactions on Power Delivery,2010,25(2):919-929.
    [9]BRUYN J R D.On the formation of periodic arrays of icicles[J].Cold Regions Science and Technology,1997,25(3):225-229.
    [10]GAGNON J,PAQUETTE E.Procedural and interactive icicle modeling[J].Visual Computer,2011,27(27):451-461.
    [11]MAKKONEN L.A model of icicle growth[J].Journal of Glaciology,1988,34(116):64-70.
    [12]MAKKONEN L.Models for the growth of rime,glaze,icicles and wet snow on structures[J].Philosophical Transactions Mathematical Physical&Engineering Sciences,2000,358(1776):2913-2939.
    [13]MAKKONEN L,FUJII Y.Spacing of icicles[J].Cold Regions Science and Technology,1993,21(3):317-322.
    [14]SZILDER K,LOZOWSKI E P.An analytical model of icicle growth[J].Annals of Glaciology,1994,101(19):141-145.
    [15]SZILDER K,LOZOWSKI E P.Simulation of icicle growth using a three-dimensional random walk model[J].Atmospheric Research,1995,36(3/4):243-249.
    [16]LéBATTO E B,FARZANEH M,LOZOWSKI E P.Conductor icing:comparison of a glaze icing model with experiments under severe laboratory conditions with moderate wind speed[J].Cold Regions Science&Technology,2015,113:20-30.
    [17]FAN S H,JIANG X L.DC ice-melting model for wet-growth icing conductor and its experimental investigation[J].Science China(Technological Sciences),2010,53(12):3248-3257.
    [18]朱永灿,黄新波,贾建援,等.输电线路覆冰导线对流换热的数值模拟[J].高电压技术,2015,41(10):3441-3446.ZHU Yongcan,HUANG Xinbo,JIA Jianyuan,et al.Numerical simulation of surface heat convection for iced conductor[J].High Voltage Engineering,2015,41(10):3441-3446.
    [19]黄新波,高华,朱永灿,等.输电导线粗糙覆冰表面对流换热特性[J].高电压技术,2018,44(11):3509-3516.HUANG Xinbo,GAO Hua,ZHU Yongcan,et al.Convective heat transfer characteristics of transmission lines on rough ice surface[J].High Voltage Engineering,2018,44(11):3509-3516.
    [20]唐家鹏.FLUENT 14.0超级学习手册[M].北京:人民邮电出版社,2013.TANG Jiapeng.Super learning manual of FLUENT 14.0[M].Beijing,China:Posts and Telecommunications Press,2013.
    [21]范松海.输电线路短路电流融冰过程与模型研究[D].重庆:重庆大学,2010.FAN Songhai.Study on process and model of ice-melting with short circuit current on iced conductor[D].Chongqing,China:Chongqing University,2010.