葡萄酒泥酵母海藻糖提取工艺优化及对3株非酿酒酵母乙醇耐受性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of extracting processing condition of trehalose from wine yeast and its effect on ethanol tolerance of three non-Saccharomyces cerevisiae
  • 作者:刘琦 ; 祝霞 ; 赵丹丹 ; 王璐璐 ; 杨学山
  • 英文作者:LIU Qi;ZHU Xia;ZHAO Dan-dan;WANG Lu-lu;YANG Xue-shan;College of Life Science and Technology,Gansu Agricultural University;Key Laboratory of Grape and Wine Engineering of Gansu Province;College of Food Science and Engineering,Gansu Agricultural University;
  • 关键词:海藻糖 ; 提取 ; 乙醇 ; 非酿酒酵母 ; 耐受性
  • 英文关键词:trehalose;;extraction;;ethanol;;non-Saccharomyces cerevisiae;;tolerance
  • 中文刊名:GSND
  • 英文刊名:Journal of Gansu Agricultural University
  • 机构:甘肃农业大学生命科学技术学院;甘肃省葡萄与葡萄酒工程学重点实验室;甘肃农业大学食品科学与工程学院;
  • 出版日期:2018-08-15
  • 出版单位:甘肃农业大学学报
  • 年:2018
  • 期:v.53;No.208
  • 基金:国家自然科学基金项目(31660455,31760454);; 甘肃省重点研发计划项目(17YF1NA060)
  • 语种:中文;
  • 页:GSND201804023
  • 页数:7
  • CN:04
  • ISSN:62-1055/S
  • 分类号:158-164
摘要
【目的】优化建立葡萄酒泥酵母海藻糖分离提取工艺,探究外源海藻糖对非酿酒酵母菌株乙醇耐受性的影响.【方法】以葡萄酒泥酵母为原料提取海藻糖,利用单因素及L_9(3~4)正交试验方法进行工艺优化,并以3株非酿酒酵母菌株为研究对象,在模拟葡萄汁中添加300mg/L分离提取的海藻糖,分析其对非酿酒酵母菌株乙醇耐受性的影响.【结果】海藻糖提取最佳工艺条件为提取温度90℃,乙醇体积分数35%,提取时间65min,在此条件下,海藻糖得率较高为4.36%.试验初步确定添加300mg/L海藻糖可有效增强3株非酿酒酵母菌株对乙醇的耐受性.【结论】研究结果可为葡萄酒泥酵母资源化开发利用提供一定理论指导.
        【Objective】In order to optimize the establishment of wine yeast mud trehalose separation and extraction process,to explore the effect of exogenous trehalose on ethanol tolerance of non-Saccharomyces cerevisiae strains.【Method】The wine yeast was used as the raw material to extract the trehalose.The single factor test and the orthogonal test were applied to determine the optimal extraction conditions.Three strains of non-S.cerevisiae were used to study the effect of exogenous trehalose on ethanol tolerance of non-S.cerevisiae by adding 300 mg/L trehalose to simulated grape juice.【Result】The optimum extraction conditions of trehalose were as following:extraction temperature 90 ℃,ethanol volume fraction 35% and extraction time 65 min.Under this condition,the yield of trehalose reached 4.36%.It was also found that the addition of 300 mg/L exogenous trehalose effectively enhanced the ethanol tolerance of three nonS.cerevisiae.【Conclusion】The results provide some theoretical guidance for improving the utilization ofwine yeast mud.
引文
[1]SWIEGERS J H,BARTOWSKY E J,HENSCHKE P A,et al.Yeast and bacterial modulation of wine aroma and flavour[J].Australian Journal of Grape&Wine Research,2010,11(2):139-173.
    [2]ZHU F M,DU B,LI J,et al.The glycosidic aroma precursors in wine:occurrence,characterization and potential biological applications[J].Phytochemistry Reviews,2016:1-7.
    [3]赵宾宾,祝霞,杨学山,等.酿酒与非酿酒酵母共酵对‘蛇龙珠’干红葡萄酒香气物质的影响[J].甘肃农业大学学报,2017,52(5):142-151.
    [4]VARELA C.The impact of non-Saccharomyces yeasts in the production of alcoholic beverages[J].Applied Microbiology&Biotechnology,2016,100(23):9861-9874.
    [5]FLEET G H.Wine yeasts for the future[J].Fems Yeast Research,2008,8(7):979-995.
    [6]朱宝生,刘功良,白卫东,等.耐高糖酵母筛选及其高糖胁迫机制的研究进展[J].中国酿造,2016,35(6):11-14.
    [7]SUN Xi,ZHANG Cui-ying,WU Ming-yue,et al.MAL62overexpression and NTH1deletion enhance the freezing tolerance and fermentation capacity of the baker’s yeast in lean dough[J].Microbial Cell Factories,2016,15(1):54.
    [8]CAO T S,CHI Z,LIU G L,et al.Expression of TPS1,gene from Saccharomycopsis fibuligera,A11in Saccharomyces,sp.W0enhances trehalose accumulation,ethanol tolerance,and ethanol production[J].Molecular Biotechnology,2013,56(1):72-78.
    [9]王帅.南极酵母Pseudozyma sp.JCC207海藻糖基因及其适应南极极端环境分子机制研究[D].济南:山东大学,2016.
    [10]倪松,王聪,宋旭,等.高渗环境假丝酵母胞内甘油和海藻糖代谢研究[J].食品研究与开发,2016,37(5):134-136.
    [11]STILLER I,DULAI S,KONDRAK M,et al.Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae[J].Planta,2008,227(2):299-308.
    [12]O'SHEA TM,WEBBER MJ,AIMETTI AA,et al.Covalent incorporation of trehalose within hydrogels for enhanced long-term functional stability and controlled release of biomacromolecules[J].Advanced Healthcare Materials,2015,4(12):1802-1812.
    [13]杜娜,杨学山,韩舜愈,等.超声波辅助酶法分离提取葡萄酒泥酵母SOD工艺条件的优化[J].食品科学,2014,35(2):87-90.
    [14]祝霞,盛文军,杜娜,等.超声波辅助提取葡萄酒泥酵母超氧化物歧化酶工艺优化[J].甘肃农业大学学报,2014(3):146-150.
    [15]李颍,杨婷,祝霞,等.响应面法优化葡萄酒泥酵母甘露聚糖提取工艺条件[J].食品工业科技,2015,36(16):294-298.
    [16]杨婷,祝霞,李颍,等.葡萄酒泥酵母β-葡聚糖提取工艺条件优化[J].食品工业科技,2015,36(18):286-289.
    [17]赵玉巧,杜云建,王微,等.海洋酵母内海藻糖的提取方法研究[J].食品研究与开发,2013(12):34-37.
    [18]于洋,粟春燕,陈晶瑜.3株葡萄酒非酿酒酵母的生长与发酵特性[J].食品科学,2015,36(19):106-111.
    [19]侯晓瑞,王婧,杨学山,等.甘肃河西走廊葡萄酒产区高产β-葡萄糖苷酶酵母菌株筛选[J].食品科学,2014,35(23):139-143.
    [20]马腾臻.‘蛇龙珠’葡萄酒酒精发酵过程中品种香气释放调控研究[D].兰州:甘肃农业大学,2015.
    [21]李新菊.非酿酒酵母的筛选及多样性研究[D].石河子:石河子大学,2015.
    [22]易弋,伍时华.酒精耐受性酵母菌的筛选[J].广西科技大学学报,2008,19(3):42-46.
    [23]王星晨,胡凯,陶永胜.葡萄汁有孢汉逊酵母和酿酒酵母的混合酒精发酵动力学[J].食品科学,2016,37(3):103-108.
    [24]张雪莲.从酵母中提取纯化海藻糖[D].天津:河北工业大学,2005.
    [26]方华,李灏.海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用[J].中国生物工程杂志,2014,34(6):84-89.
    [25]侯晓月.CYR1基因启动子改造对酿酒酵母耐受性的影响研究天津:天津科技大学,2016.
    [27]姜如娇.SPT3定向进化提高酿酒酵母乙醇耐性的研究[D].大连:大连理工大学,2009.
    [28]方华.海藻糖与热激蛋白共表达提高酿酒酵母乙醇耐受性[D].北京:北京化工大学,2015.
    [29]张丽杰,王昌科,韩雪,等.酵母中海藻糖提取的响应曲面优化及纯化工艺[J].生物技术,2014(3):82-87.