太湖流域降雨和湖水酸根阴离子长期变化及其环境意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Long-term trends of acid anion in the rain water in Lake Taihu watershed and the lake water,and its environmental implications
  • 作者:赵健 ; 代丹 ; 王瑞 ; 郝晨林 ; 何成达 ; 于涛
  • 英文作者:ZHAO Jian;DAI Dan;WANG Rui;HAO Chenlin;HE Chengda;YU Tao;Chinese Research Academy of Environmental Sciences;College of Water Sciences,Beijing Normal University;College of Environmental Science and Technology,Yangzhou University;
  • 关键词:酸根阴离子 ; 酸沉降 ; 富营养化 ; 降雨 ; 太湖
  • 英文关键词:Acid anions;;acid deposition;;eutrophication;;rainwater;;Lake Taihu
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国环境科学研究院;北京师范大学水科学研究院;扬州大学环境科学与工程学院;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家水体污染控制与治理科技重大专项(2018ZX07208001,2017ZX07301003);; 中国环境科学研究院环境基准与风险评估国家重点实验室基金项目(SKLECRA2016OFP11,SKLECRA2017OFP01)联合资助
  • 语种:中文;
  • 页:FLKX201901009
  • 页数:11
  • CN:01
  • ISSN:32-1331/P
  • 分类号:90-100
摘要
为揭示太湖流域降雨和湖水酸根阴离子长期变化特征及环境意义,通过历史数据收集和采样分析,对太湖流域降雨和湖水中的SO_4~(2-)、NO_3~-变化特征和来源进行了研究.结果表明:自1990s以来太湖流域降雨中SO_4~(2-)呈显著下降趋势,年平均下降率为0.28 mg/(L·a); NO_3~-浓度却呈显著上升趋势,年平均增长率为0.05 mg/(L·a),降雨中氮污染呈现加重的趋势.与之相反,湖水中SO_4~(2-)呈显著上升趋势,年平均增长率为1.24 mg/(L·a); NO_3~-浓度却呈显著下降趋势,年平均下降率为0.02 mg/(L·a). 30年以来,太湖水体SO_4~(2-)/NO_3~-比值不断升高,远高于降水SO_4~(2-)/NO_3~-比值.研究认为:流域SO2排放引起的酸沉降是湖水SO_4~(2-)浓度增长的最重要原因,但氮氧化物排放并未引起湖水NO_3~-浓度升高,说明太湖流域对大气沉降的氮氧化物有滞留作用,而太湖水体是流域大气沉降硫酸盐的重要汇.综合治理太湖流域酸性物质排放对防止太湖水体酸化和治理富营养化都具有重要意义.
        To explore long-term trends of acid anions in the rain water in Lake Taihu watershed,the lake water and their environmental implications,the variation characteristics,sources and the relationships of SO_4~(2-) ,NO_3~- in the rain water and the lake water were studied via historical data collection and sampling analysis. The results indicated that SO_4~(2-) in the rainwater showed a significant decreasing trend since 1990 s with an annual average decrease rate of 0.28 mg/( L·a),and the NO_3~-showed a significant increasing trend with an annual average increase rate of 0.05 mg/( L·a),which suggests an aggravating trend of nitrogen pollution in the rain water. In contrast,SO_4~(2-) in the lake water showed a significant increasing trend with an annual average increase rate of 1.24mg/( L·a),and the NO_3~-showed a significant decreasing trend with an annual average decrease rate of 0.02 mg/( L·a). During the past 30 years,the ratio of SO_4~(2-) /NO_3~-in Lake Taihu water continuously increased,much higher than that of the rain water. The research indicated that the acid deposition caused by SO_2 emissions in the watershed was mainly responsible for the increased concentration of SO_4~(2-) in the lake water. However,the nitrogen oxides emissions did not cause an increase concentration of NO_3~-in the lake water,indicating that Lake Taihu watershed plays a significant role in the retention of nitrogen deposition,while the lake water is an important sink for sulfate deposition. The regional nitrogen deposition has an important impact on Lake Taihu water eutrophication. It is of great significance to prevent the acidification and eutrophication in Lake Taihu via comprehensive management of acid emissions in Lake Taihu watershed.
引文
[1] Baker LA,Herlihy AT,Kaufmann PR et al. Acidic lakes and streams in the United States:The role of acidic deposition.Science,1991,252(5009):1151-1154.
    [2] Eshleman KN,Kaufmann PR. Assessing the regional effects of sulfur deposition on surface water chemistry:the Southern Blue Ridge. Environmental Science&Technology,1988,22(6):685-690.
    [3] Lawrence GB,Hazlett PW,Fernandez IJ et al. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern US and eastern Canada. Environmental Science&Technology,2015,49(22):13103-13111.
    [4] Duan L,Ma X,Larssen T et al. Response of surface water acidification in upper Yangtze River to SO2emissions abatement in China. Environmental Science&Technology,2011,45(8):3275-3281.
    [5] Hesthagen T,Fjellheim A,Schartau AK et al. Chemical and biological recovery of Lake Saudlandsvatn,a formerly highlyacidified lake in southernmost Norway,in response to decreased acid deposition. Science of the Total Environment,2011,409(15):2908-2916.
    [6] Zhao D,Sun B. Air pollution and acid rain in China. Ambio,1986,15(1):2-5.
    [7] Larssen T,Carmichael GR. Acid rain and acidification in China:the importance of base cation deposition. Environmental Pollution,2000,110(1):89-102.
    [8] Chen JS,Wang FY,Xia XH et al. Major element chemistry of the Changjiang(Yangtze River). Chemical Geology,2002,187(3/4):231-255.
    [9] Zhao Y,Duan L,Xing J et al. Soil acidification in China:Is controlling SO2emissions enough? Environmental Science&Technology,2009,43(21):8021-8026.
    [10] Rosfjord CH,Webster KE,Kahl JS et al. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition. Environmental Science&Technology,2007,41(22):7688-7693.
    [11] Luo LC,Qin BQ,Song YZ et al. Seasonal and regional variations in precipitation chemistry in the Lake Taihu Basin,China. Atmospheric Environment,2007,41(12):2674-2679.
    [12] Yang F,Yu H,Li L. Effect of wet deposition on water quality and concentration of chlorophyll a in Lake Tai. Hubei Agricultural Sciences,2014,53(3):28-32.[杨凡,余辉,李莉.大气湿沉降对太湖水质及叶绿素a的影响.湖北农业科学,2014,53(3):28-32.]
    [13] Qin BQ,Zhu GW,Gao G et al. A Drinking Water Crisis in Lake Taihu,China:Linkage to climatic variability and lake management. Environmental Management,2010,45(1):105-112.
    [14] Wu YL,Xu H,Yang GJ et al. Progress in nitrogen pollution research in Lake Taihu. J Lake Sci,2014,26(1):19-28.DOI:10.18307/2014. 0103.[吴雅丽,许海,杨桂军等.太湖水体氮素污染状况研究进展.湖泊科学,2014,26(1):19-28.]
    [15] Yu T,Zhang Y,Wu FC et al. Six-decade change in water chemistry of large freshwater Lake Taihu,China. Environmental Science&Technology,2013,47(16):9093-9101.
    [16] Li ZY. Relation between ion concentration and p H in precipitation in numberof Chinese cities. Acta Scientiae Circumstantiae,1999,19(3):303-306.[李祚泳.我国部分城市降水中离子浓度与pH值的关系研究.环境科学学报,1999,19(3):303-306.]
    [17] Yu T,Xu QJ,He CD et al. Long-term trends in acid neutralizing capacity under increasing acidic deposition:A special example of eutrophic Taihu Lake,China. Environmental Science&Technology,2016,50(23):12660-12668.
    [18] Qin BQ,Hu CH. Data set of located ecosystem monitoring and study in China(Taihu Lake Station,Jiangsu Province,1991-2006):First edition. Beijing:China Agriculture Press,2010.[秦伯强,胡春华.中国生态系统定位观测与研究数据集:湖泊湿地海湾生态系统卷(江苏太湖站1991-2006):第一版.北京:中国农业出版社,2010.]
    [19] Editorial board of"water and wastewater monitoring and analysis method",Ministry of Environmental Protection of People’s Republic of China ed. Monitoring and analysis methods of water and wastewater:fourth edition. Beijing:China Environmental Science Press,2002.[国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:第4版.北京:中国环境科学出版社,2002.]
    [20] Liu JT,Fang SW,Feng Q et al. Analysis of regime shift in Taihu Lake based on Mann-Kendall method. China Environmental Science,2015,35(12):3707-3713.[刘聚涛,方少文,冯倩等.基于Mann-Kendall法的湖泊稳态转换突变分析.中国环境科学,2015,35(12):3707-3713.]
    [21] Gocic M,Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change,2013,100:172-182.
    [22] Tu J,Wang H,Zhang Z et al. Trends in chemical composition of precipitation in Nanjing,China,during 1992-2003. Atmospheric Research,2005,73(3):283-298.
    [23] Sha CY,He WS,Fu CT et al. Analysis on the variation of acidity and chemical compositions of rainwater in Shanghai. Research of Environmental Sciences,2007,20(5):31-34.[沙晨燕,何文珊,童春富等.上海近期酸雨变化特征及其化学组分分析.环境科学研究,2007,20(5):31-34.]
    [24] Bernhardt ES. Ecology. Cleaner lakes are dirtier lakes. Science,2013,342(6155):205-206.
    [25] Yu T,Dai D,Lei K et al.δ15N and nutrient stoichiometry of water,aquatic organisms and environmental implications in Taihu lake,China. Environmental Pollution,2018,237:166-173.
    [26] Guo JH,Wang FS,Vogt RD et al. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin. Scientific Reports,2015,5:11941-11948.
    [27] Dai D,Zhang Y,Han XJ et al. Impact of sewage discharge in Taihu Basin on the water chemistry of Lake Taihu. Acta Scientiae Circumstantiae,2015,35(10):3121-3130.[代丹,张远,韩雪娇等.太湖流域污水排放对湖水天然水化学的影响.环境科学学报,2015,35(10):3121-3130.]
    [28] Yu T,Dai D,He C et al. Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake,China. Environmental Science and Pollution Research,2016,23(22):22489-22499.
    [29] Neary BP,Dillon PJ. Effects of sulphur deposition on lake-water chemistry in Ontario,Canada. Nature,1988,333(6171):340-343.
    [30] Galloway JN,Norton SA,Church MR. Freshwater acidification from atmospheric deposition of sulfuric acid:A conceptual model. Environmental Science&Technology,1983,17(11):541A-545A.
    [31] Zhai DX,Yang ZF,Liu QQ et al. Major ion chemistry and influencing factors of rivers in Poyang Lake basin. Earth Science Frontiers,2012,19(1):264-276.[翟大兴,杨忠芳,柳青青等.鄱阳湖流域水化学特征及影响因素分析.地学前缘,2012,19(1):264-276].
    [32] Hu CH,Zhou WB,Xia SQ. Charcteristics of major ions and the influence factors in Poyang Lake catchment. Environmental Chemistry,2011,30(9):1620-1626.[胡春华,周文斌,夏思奇.鄱阳湖流域水化学主离子特征及其来源分析.环境化学,2011,30(9):1620-1626.]
    [33] Qin BQ,Liu ZW,Havens K. Eutrophication of shallow lakes with special reference to Lake Taihu,China. Springer Science&Business Media,2007,53-61:135-140.
    [34] Wang XJ,Zhang W,Huang YN et al. Modeling and simulation of point-non-point source effluent trading in Taihu Lake area:perspective of non-point sources control in China. Science of the Total Environment,2004,325(1):39-50.
    [35] Cheng ST,Qian CY,Zhang HJ. Estimation and application of macroscopic water environmental capacity of phosphorus and nitrongen for Taihu Lake. Acta Scientiae Circumstantiae,2013,33(10):2848-2855.[程声通,钱益春,张红举.太湖总磷、总氮宏观水环境容量的估算与应用.环境科学学报,2013,33(10):2848-2855.]
    [36] Yu H,Zhang LL,Yan SW et al. Atmospheric wet deposition characteristics of nitrogen and phosphorus nutrients in Taihu Lake and contributions to the lake. Research of Environmental Sciences,2011,24(11):1210-1219.[余辉,张璐璐,燕姝雯等.太湖氮磷营养盐大气湿沉降特征及入湖贡献率.环境科学研究,2011,24(11):1210-1219.]
    [37] Luo YX. Nitrogen Load of agricultural sources and spatial variations in the Taihu Lake Basin[Dissertation]. Nanjing:Nanjing Agricultural University,2016:47.[罗永霞.太湖流域农业源氮排放及其空间特征[学位论文].南京:南京农业大学,2016:47.]
    [38] Amos HM,Jacob DJ,Kocman D et al. Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environmental Science&Technology,2014,48(16):9514-9522.
    [39] Lu X,Mao Q,Mo J et al. Divergent responses of soil buffering capacity to long-term n deposition in three typical tropical forests with different land-use history. Environmental Science&Technology,2015,49(7):4072-4080.
    [40] De Leeuw G,Spokes L,Jickells T et al. Atmospheric nitrogen inputs into the North Sea:effect on productivity. Continental Shelf Research,2003,23(17):1743-1755.
    [41] Song YZ,Qin BQ,Yang LY et al. Primary estimation of atmospheric wet deposition of nitrogen to aquatic ecosystem of Lake Taihu. J Lake Sci,2005,17(3):226-30. DOI:10.18307/2005.0306.[宋玉芝,秦伯强,杨龙元等.大气湿沉降向太湖水生生态系统输送氮的初步估算.湖泊科学,2005,17(3):226-30.]
    [42] Zhao QH,Sun GD,Wang JJ et al. Coupling effect of water temperature and light energy on the algal growth in Lake Taihu.J Lake Sci,2018,30(2):385-393. DOI:10.18307/2018.0210.[赵巧华,孙国栋,王健健等.水温、光能对春季太湖藻类生长的耦合影响.湖泊科学,2018,30(2):385-393.]