Study of backward terahertz radiation from intense picosecond laser–solid interactions using a multichannel calorimeter system
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of backward terahertz radiation from intense picosecond laser–solid interactions using a multichannel calorimeter system
  • 作者:H. ; Liu ; G.-Q. ; Liao ; Y.-H. ; Zhang ; B.-J. ; Zhu ; Z. ; Zhang ; Y.-T. ; Li ; G. ; G. ; Scott ; D. ; Rusby ; C. ; Armstrong ; E. ; Zemaityte ; P. ; Bradford ; N. ; Woolsey ; P. ; Huggard ; P. ; McKenna ; D. ; Neely
  • 英文作者:H.Liu;G.-Q.Liao;Y.-H.Zhang;B.-J.Zhu;Z.Zhang;Y.-T.Li;G.G.Scott;D.Rusby;C.Armstrong;E.Zemaityte;P.Bradford;N.Woolsey;P.Huggard;P.McKenna;D.Neely;Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences;School of Physical Sciences, University of Chinese Academy of Sciences;Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University;Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University;Central Laser Facility, Rutherford Appleton Laboratory;Department of Physics, SUPA, University of Strathclyde;Department of Physics, York Plasma Institute, University of York;Space Science Department, STFC Rutherford Appleton Laboratory;
  • 英文关键词:multichannel calorimeter;;backward terahertz radiation;;generation mechanisms
  • 中文刊名:HPLS
  • 英文刊名:高功率激光科学与工程(英文版)
  • 机构:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences;School of Physical Sciences, University of Chinese Academy of Sciences;Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University;Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University;Central Laser Facility, Rutherford Appleton Laboratory;Department of Physics, SUPA, University of Strathclyde;Department of Physics, York Plasma Institute, University of York;Space Science Department, STFC Rutherford Appleton Laboratory;
  • 出版日期:2019-03-30
  • 出版单位:High Power Laser Science and Engineering
  • 年:2019
  • 期:v.7
  • 基金:supported by the Newton China–UK joint research grant on laser–ion acceleration and novel terahertz radiation;; EPSRC grant EP/K022415/1 on advanced laser–ion acceleration strategies toward next generation healthcare and EPSRC grant EP/R006202/1;; supported by the National NaturalScience Foundation of China(Nos.11520101003 and11861121001);; the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB16010200 and XDB07030300);; support from the National Postdoctoral Program for Innovative Talents(No.BX201600106)
  • 语种:英文;
  • 页:HPLS201901006
  • 页数:7
  • CN:01
  • ISSN:31-2078/O4
  • 分类号:51-57
摘要
A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broadband spectral measurement of terahertz(THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation(BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component(<1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component(>3 THz) of BTR.
        A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broadband spectral measurement of terahertz(THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation(BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component(<1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component(>3 THz) of BTR.
引文
1.T.Kampfrath,K.Tanaka,and K.A.Nelson,Nat.Photon.7,680(2013).
    2.H.A.Hafez,X.Chai,A.Ibrahim,S.Mondal,D.F′erachou,X.Ropagnol,and T.Ozaki,J.Opt.18,093004(2016).
    3.E.A.Nanni,W.R.Huang,K.H.Hong,K.Ravi,A.Fallahi,G.Moriena,R.J.Miller,and F.X.Kartner,Nature Commun.6,8486(2015).
    4.D.R.Symes,D.Neely,J.L.Collier,D.A.Jaroszynski,and D.Dumitras,AIP Conf.Proc.1228,444(2010).
    5.C.Danson,D.Hillier,N.Hopps,and D.Neely,High Power Laser Sci.Eng.3,e3(2015).
    6.C.Li,G.Q.Liao,M.L.Zhou,F.Du,J.L.Ma,Y.T.Li,W.M.Wang,Z.M.Sheng,L.M.Chen,and J.Zhang,Opt.Express24,4010(2016).
    7.G.Q.Liao,Y.T.Li,C.Li,L.N.Su,Y.Zheng,M.Liu,W.M.Wang,Z.D.Hu,W.C.Yan,J.Dunn,J.Nilsen,J.Hunter,Y.Liu,X.Wang,L.M.Chen,J.L.Ma,X.Lu,Z.Jin,R.Kodama,Z.M.Sheng,and J.Zhang,Phys.Rev.Lett.114,255001(2015).
    8.G.Q.Liao,Y.T.Li,Y.H.Zhang,H.Liu,X.L.Ge,S.Yang,W.Q.Wei,X.H.Yuan,Y.Q.Deng,B.J.Zhu,Z.Zhang,W.M.Wang,Z.M.Sheng,L.M.Chen,X.Lu,J.L.Ma,X.Wang,and J.Zhang,Phys.Rev.Lett.116,205003(2016).
    9.G.Q.Liao,Y.T.Li,C.Li,H.Liu,Y.H.Zhang,W.M.Jiang,X.H.Yuan,J.Nilsen,T.Ozaki,W.M.Wang,Z.M.Sheng,D.Neely,P.McKenna,and J.Zhang,Plasma Phys.Control.Fusion 59,014039(2017).
    10.A.Gopal,S.Herzer,A.Schmidt,P.Singh,A.Reinhard,W.Ziegler,D.Brommel,A.Karmakar,P.Gibbon,U.Dillner,T.May,H.G.Meyer,and G.G.Paulus,Phys.Rev.Lett.111,074802(2013).
    11.A.Gopal,P.Singh,S.Herzer,A.Reinhard,A.Schmidt,U.Dillner,T.May,H.G.Meyer,W.Ziegler,and G.G.Paulus,Opt.Lett.38,4705(2013).
    12.Z.Wu,A.S.Fisher,J.Goodfellow,M.Fuchs,D.Daranciang,M.Hogan,H.Loos,and A.Lindenberg,Rev.Sci.Instrum.84,022701(2013).
    13.C.Vicario,A.V.Ovchinnikov,S.I.Ashitkov,M.B.Agranat,V.E.Fortov,and C.P.Hauri,Opt.Lett.39,6632(2014).
    14.Z.M.Sheng,K.Mima,J.Zhang,and H.Sanuki,Phys.Rev.Lett.94,095003(2005).
    15.W.J.Ding,Z.M.Sheng,and W.S.Koh,Appl.Phys.Lett.103,204107(2013).
    16.H.Hamster,A.Sullivan,S.Gordon,W.White,and R.W.Falcone,Phys.Rev.Lett.71,2725(1993).
    17.C.Li,M.L.Zhou,W.J.Ding,F.Du,F.Liu,Y.T.Li,W.M.Wang,Z.M.Sheng,J.L.Ma,L.M.Chen,X.Lu,Q.L.Dong,Z.H.Wang,Z.Lou,S.C.Shi,Z.Y.Wei,and J.Zhang,Phys.Rev.E 84,036405(2011).
    18.Z.-M.Sheng,K.Mima,and J.Zhang,Phys.Plasmas 12,123103(2005).
    19.Y.T.Li,C.Li,M.L.Zhou,W.M.Wang,F.Du,W.J.Ding,X.X.Lin,F.Liu,Z.M.Sheng,X.Y.Peng,L.M.Chen,J.L.Ma,X.Lu,Z.H.Wang,Z.Y.Wei,and J.Zhang,Appl.Phys.Lett.100,254101(2012).
    20.A.Sagisaka,H.Daido,S.Nashima,S.Orimo,K.Ogura,M.Mori,A.Yogo,J.Ma,I.Daito,A.S.Pirozhkov,S.V.Bulanov,T.Z.Esirkepov,K.Shimizu,and M.Hosoda,Appl.Phys.B90,373(2008).
    21.Q.Wu and X.C.Zhang,Appl.Phys.Lett.67,3523(1995).
    22.L.-L.Zhang,W.-M.Wang,T.Wu,R.Zhang,S.-J.Zhang,C.-L.Zhang,Y.Zhang,Z.-M.Sheng,and X.-C.Zhang,Phys.Rev.Lett.119,235001(2017).
    23.Q.Wu and X.C.Zhang,Appl.Phys.Lett.70,1784(1997).
    24.A.S.Meijer,J.J.H.Pijpers,H.K.Nienhuys,M.Bonn,and W.J.van der Zande,J.Opt.A 10,095303(2008).
    25.S.Wesch,B.Schmidt,C.Behrens,H.Delsim-Hashemi,and P.Schm¨user,Nucl.Instrum.Methods Phys.Res.A 665,40(2011).
    26.C.Li,G.-Q.Liao,and Y.-T.Li,High Power Laser Sci.Eng.3,e15(2015).
    27.X.Su,L.Yan,Y.Du,Z.Zhang,Z.Zhou,D.Wang,L.Zheng,Q.Tian,W.Huang,and C.Tang,Nucl.Instrum.Methods Phys.Res.B 402,157(2017).
    28.http://www.tydexoptics.com/pdf/THz Materials.pdf.
    29.http://www.eltecinstruments.com/PDF/Ds/Data%20Sheet%20-%20Model%20400.pdf.
    30.X.-J.Wu,J.-L.Ma,B.-L.Zhang,S.-S.Chai,Z.-J.Fang,C.-Y.Xia,D.-Y.Kong,J.-G.Wang,H.Liu,C.-Q.Zhu,X.Wang,C.-J.Ruan,and Y.-T.Li,Opt.Express 26,7107(2018).
    31.P.G.Huggard,S.Zeuner,K.Goller,H.Lengfellner,and W.Prettl,J.Appl.Phys.75,616(1994).
    32.http://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup id=7611.
    33.C.N.Danson,J.Collier,D.Neely,L.J.Barzanti,A.Damerell,C.B.Edwards,M.H.R.Hutchinson,M.H.Key,P.A.Norreys,and D.A.Pepler,Opt.Acta Int.J.Opt.45,1653(1998).
    34.M.J.Mead,D.Neely,J.Gauoin,R.Heathcote,and P.Patel,Rev.Sci.Instrum.75,4225(2004).
    35.P.Bradford,N.C.Woolsey,G.G.Scott,G.Liao,H.Liu,Y.Zhang,B.Zhu,C.Armstrong,S.Astbury,C.Brenner,P.Brummitt,F.Consoli,I.East,R.Gray,D.Haddock,P.Huggard,P.J.R.Jones,E.Montgomery,I.Musgrave,P.Oliveira,D.R.Rusby,C.Spindloe,B.Summers,E.Zemaityte,Z.Zhang,Y.Li,P.McKenna,and D.Neely,High Power Laser Sci.Eng.6,e21(2018).
    36.C.B.Schroeder,E.Esarey,J.Van Tilborg,and W.P.Leemans,Phys.Rev.E 69,016501(2004).
    37.M.N.Quinn,X.H.Yuan,X.X.Lin,D.C.Carroll,O.Tresca,R.J.Gray,M.Coury,C.Li,Y.T.Li,C.M.Brenner,A.P.L.Robinson,D.Neely,B.Zielbauer,B.Aurand,J.Fils,T.Kuehl,and P.McKenna,Plasma Phys.Control.Fusion 53,025007(2011).
    38.Y.Sentoku,T.E.Cowan,A.Kemp,and H.Ruhl,Phys.Plasmas 10,2009(2003).
    39.P.McKenna,D.C.Carroll,O.Lundh,F.N¨urnberg,K.Markey,S.Bandyopadhyay,D.Batani,R.G.Evans,R.Jafer,S.Kar,D.Neely,D.Pepler,M.N.Quinn,R.Redaelli,M.Roth,C.G.Wahlstr¨om,X.H.Yuan,and M.Zepf,Laser Part Beams 26,591(2008).
    40.T.Z.Esirkepov,J.K.Koga,A.Sunahara,T.Morita,M.Nishikino,K.Kageyama,H.Nagatomo,K.Nishihara,A.Sagisaka,H.Kotaki,T.Nakamura,Y.Fukuda,H.Okada,A.S.Pirozhkov,A.Yogo,M.Nishiuchi,H.Kiriyama,K.Kondo,M.Kando,and S.V.Bulanov,Nucl.Instrum.Methods Phys.Res.A 745,150(2014).